app.py
#39
by
Mudrock
- opened
app.py
CHANGED
@@ -1,344 +1,43 @@
|
|
1 |
-
from
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
'
|
22 |
-
'
|
23 |
-
'
|
24 |
-
'
|
25 |
-
'
|
26 |
-
'
|
27 |
-
'
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
img= Image.open(i)
|
45 |
-
np_img = np.array(img)
|
46 |
-
|
47 |
-
a_prompt = "best quality, extremely detailed"
|
48 |
-
n_prompt = "longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality"
|
49 |
-
num_samples = 1
|
50 |
-
image_resolution = 512
|
51 |
-
detect_resolution = 512
|
52 |
-
eta = 0.0
|
53 |
-
#low_threshold = 100
|
54 |
-
#high_threshold = 200
|
55 |
-
#value_threshold = 0.1
|
56 |
-
#distance_threshold = 0.1
|
57 |
-
#bg_threshold = 0.4
|
58 |
-
|
59 |
-
if control_task == 'Canny':
|
60 |
-
result = model.process_canny(np_img, prompt, a_prompt, n_prompt, num_samples,
|
61 |
-
image_resolution, ddim_steps, scale, seed_in, eta, low_threshold, high_threshold)
|
62 |
-
elif control_task == 'Depth':
|
63 |
-
result = model.process_depth(np_img, prompt, a_prompt, n_prompt, num_samples,
|
64 |
-
image_resolution, detect_resolution, ddim_steps, scale, seed_in, eta)
|
65 |
-
elif control_task == 'Hed':
|
66 |
-
result = model.process_hed(np_img, prompt, a_prompt, n_prompt, num_samples,
|
67 |
-
image_resolution, detect_resolution, ddim_steps, scale, seed_in, eta)
|
68 |
-
elif control_task == 'Hough':
|
69 |
-
result = model.process_hough(np_img, prompt, a_prompt, n_prompt, num_samples,
|
70 |
-
image_resolution, detect_resolution, ddim_steps, scale, seed_in, eta, value_threshold,
|
71 |
-
distance_threshold)
|
72 |
-
elif control_task == 'Normal':
|
73 |
-
result = model.process_normal(np_img, prompt, a_prompt, n_prompt, num_samples,
|
74 |
-
image_resolution, detect_resolution, ddim_steps, scale, seed_in, eta, bg_threshold)
|
75 |
-
elif control_task == 'Pose':
|
76 |
-
result = model.process_pose(np_img, prompt, a_prompt, n_prompt, num_samples,
|
77 |
-
image_resolution, detect_resolution, ddim_steps, scale, seed_in, eta)
|
78 |
-
elif control_task == 'Scribble':
|
79 |
-
result = model.process_scribble(np_img, prompt, a_prompt, n_prompt, num_samples,
|
80 |
-
image_resolution, ddim_steps, scale, seed_in, eta)
|
81 |
-
elif control_task == 'Seg':
|
82 |
-
result = model.process_seg(np_img, prompt, a_prompt, n_prompt, num_samples,
|
83 |
-
image_resolution, detect_resolution, ddim_steps, scale, seed_in, eta)
|
84 |
-
|
85 |
-
#print(result[0])
|
86 |
-
processor_im = Image.fromarray(result[0])
|
87 |
-
processor_im.save("process_" + control_task + "_" + str(i) + ".jpeg")
|
88 |
-
im = Image.fromarray(result[1])
|
89 |
-
im.save("your_file" + str(i) + ".jpeg")
|
90 |
-
return "your_file" + str(i) + ".jpeg", "process_" + control_task + "_" + str(i) + ".jpeg"
|
91 |
-
|
92 |
-
def change_task_options(task):
|
93 |
-
if task == "Canny" :
|
94 |
-
return canny_opt.update(visible=True), hough_opt.update(visible=False), normal_opt.update(visible=False)
|
95 |
-
elif task == "Hough" :
|
96 |
-
return canny_opt.update(visible=False),hough_opt.update(visible=True), normal_opt.update(visible=False)
|
97 |
-
elif task == "Normal" :
|
98 |
-
return canny_opt.update(visible=False),hough_opt.update(visible=False), normal_opt.update(visible=True)
|
99 |
-
else :
|
100 |
-
return canny_opt.update(visible=False),hough_opt.update(visible=False), normal_opt.update(visible=False)
|
101 |
-
|
102 |
-
def get_frames(video_in):
|
103 |
-
frames = []
|
104 |
-
#resize the video
|
105 |
-
clip = VideoFileClip(video_in)
|
106 |
-
|
107 |
-
#check fps
|
108 |
-
if clip.fps > 30:
|
109 |
-
print("vide rate is over 30, resetting to 30")
|
110 |
-
clip_resized = clip.resize(height=512)
|
111 |
-
clip_resized.write_videofile("video_resized.mp4", fps=30)
|
112 |
-
else:
|
113 |
-
print("video rate is OK")
|
114 |
-
clip_resized = clip.resize(height=512)
|
115 |
-
clip_resized.write_videofile("video_resized.mp4", fps=clip.fps)
|
116 |
-
|
117 |
-
print("video resized to 512 height")
|
118 |
-
|
119 |
-
# Opens the Video file with CV2
|
120 |
-
cap= cv2.VideoCapture("video_resized.mp4")
|
121 |
-
|
122 |
-
fps = cap.get(cv2.CAP_PROP_FPS)
|
123 |
-
print("video fps: " + str(fps))
|
124 |
-
i=0
|
125 |
-
while(cap.isOpened()):
|
126 |
-
ret, frame = cap.read()
|
127 |
-
if ret == False:
|
128 |
-
break
|
129 |
-
cv2.imwrite('kang'+str(i)+'.jpg',frame)
|
130 |
-
frames.append('kang'+str(i)+'.jpg')
|
131 |
-
i+=1
|
132 |
-
|
133 |
-
cap.release()
|
134 |
-
cv2.destroyAllWindows()
|
135 |
-
print("broke the video into frames")
|
136 |
-
|
137 |
-
return frames, fps
|
138 |
-
|
139 |
-
|
140 |
-
def convert(gif):
|
141 |
-
if gif != None:
|
142 |
-
clip = VideoFileClip(gif.name)
|
143 |
-
clip.write_videofile("my_gif_video.mp4")
|
144 |
-
return "my_gif_video.mp4"
|
145 |
-
else:
|
146 |
-
pass
|
147 |
-
|
148 |
-
|
149 |
-
def create_video(frames, fps, type):
|
150 |
-
print("building video result")
|
151 |
-
clip = ImageSequenceClip(frames, fps=fps)
|
152 |
-
clip.write_videofile(type + "_result.mp4", fps=fps)
|
153 |
-
|
154 |
-
return type + "_result.mp4"
|
155 |
-
|
156 |
-
|
157 |
-
def infer(prompt,video_in, control_task, seed_in, trim_value, ddim_steps, scale, low_threshold, high_threshold, value_threshold, distance_threshold, bg_threshold, gif_import):
|
158 |
-
print(f"""
|
159 |
-
———————————————
|
160 |
-
{prompt}
|
161 |
-
———————————————""")
|
162 |
-
|
163 |
-
# 1. break video into frames and get FPS
|
164 |
-
break_vid = get_frames(video_in)
|
165 |
-
frames_list= break_vid[0]
|
166 |
-
fps = break_vid[1]
|
167 |
-
n_frame = int(trim_value*fps)
|
168 |
-
|
169 |
-
if n_frame >= len(frames_list):
|
170 |
-
print("video is shorter than the cut value")
|
171 |
-
n_frame = len(frames_list)
|
172 |
-
|
173 |
-
# 2. prepare frames result arrays
|
174 |
-
processor_result_frames = []
|
175 |
-
result_frames = []
|
176 |
-
print("set stop frames to: " + str(n_frame))
|
177 |
-
|
178 |
-
for i in frames_list[0:int(n_frame)]:
|
179 |
-
controlnet_img = controlnet(i, prompt,control_task, seed_in, ddim_steps, scale, low_threshold, high_threshold, value_threshold, distance_threshold, bg_threshold)
|
180 |
-
#images = controlnet_img[0]
|
181 |
-
#rgb_im = images[0].convert("RGB")
|
182 |
-
|
183 |
-
# exporting the image
|
184 |
-
#rgb_im.save(f"result_img-{i}.jpg")
|
185 |
-
processor_result_frames.append(controlnet_img[1])
|
186 |
-
result_frames.append(controlnet_img[0])
|
187 |
-
print("frame " + i + "/" + str(n_frame) + ": done;")
|
188 |
-
|
189 |
-
processor_vid = create_video(processor_result_frames, fps, "processor")
|
190 |
-
final_vid = create_video(result_frames, fps, "final")
|
191 |
-
|
192 |
-
files = [processor_vid, final_vid]
|
193 |
-
if gif_import != None:
|
194 |
-
final_gif = VideoFileClip(final_vid)
|
195 |
-
final_gif.write_gif("final_result.gif")
|
196 |
-
final_gif = "final_result.gif"
|
197 |
-
|
198 |
-
files.append(final_gif)
|
199 |
-
print("finished !")
|
200 |
-
|
201 |
-
return final_vid, gr.Accordion.update(visible=True), gr.Video.update(value=processor_vid, visible=True), gr.File.update(value=files, visible=True), gr.Group.update(visible=True)
|
202 |
-
|
203 |
-
|
204 |
-
def clean():
|
205 |
-
return gr.Accordion.update(visible=False),gr.Video.update(value=None, visible=False), gr.Video.update(value=None), gr.File.update(value=None, visible=False), gr.Group.update(visible=False)
|
206 |
-
|
207 |
-
title = """
|
208 |
-
<div style="text-align: center; max-width: 700px; margin: 0 auto;">
|
209 |
-
<div
|
210 |
-
style="
|
211 |
-
display: inline-flex;
|
212 |
-
align-items: center;
|
213 |
-
gap: 0.8rem;
|
214 |
-
font-size: 1.75rem;
|
215 |
-
"
|
216 |
-
>
|
217 |
-
<h1 style="font-weight: 900; margin-bottom: 7px; margin-top: 5px;">
|
218 |
-
ControlNet Video
|
219 |
-
</h1>
|
220 |
-
</div>
|
221 |
-
<p style="margin-bottom: 10px; font-size: 94%">
|
222 |
-
Apply ControlNet to a video
|
223 |
-
</p>
|
224 |
-
</div>
|
225 |
-
"""
|
226 |
-
|
227 |
-
article = """
|
228 |
-
|
229 |
-
<div class="footer">
|
230 |
-
<p>
|
231 |
-
Follow <a href="https://twitter.com/fffiloni" target="_blank">Sylvain Filoni</a> for future updates 🤗
|
232 |
-
</p>
|
233 |
-
</div>
|
234 |
-
<div id="may-like-container" style="display: flex;justify-content: center;flex-direction: column;align-items: center;margin-bottom: 30px;">
|
235 |
-
<p>You may also like: </p>
|
236 |
-
<div id="may-like-content" style="display:flex;flex-wrap: wrap;align-items:center;height:20px;">
|
237 |
-
|
238 |
-
<svg height="20" width="148" style="margin-left:4px;margin-bottom: 6px;">
|
239 |
-
<a href="https://huggingface.co/spaces/fffiloni/Pix2Pix-Video" target="_blank">
|
240 |
-
<image href="https://img.shields.io/badge/🤗 Spaces-Pix2Pix_Video-blue" src="https://img.shields.io/badge/🤗 Spaces-Pix2Pix_Video-blue.png" height="20"/>
|
241 |
-
</a>
|
242 |
-
</svg>
|
243 |
-
|
244 |
-
</div>
|
245 |
-
|
246 |
-
</div>
|
247 |
-
|
248 |
-
"""
|
249 |
-
|
250 |
-
with gr.Blocks(css='style.css') as demo:
|
251 |
-
with gr.Column(elem_id="col-container"):
|
252 |
-
gr.HTML(title)
|
253 |
-
gr.HTML("""
|
254 |
-
<a style="display:inline-block" href="https://huggingface.co/spaces/fffiloni/ControlNet-Video?duplicate=true"><img src="https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14" alt="Duplicate Space"></a>
|
255 |
-
""", elem_id="duplicate-container")
|
256 |
-
with gr.Row():
|
257 |
-
with gr.Column():
|
258 |
-
video_inp = gr.Video(label="Video source", source="upload", type="filepath", elem_id="input-vid")
|
259 |
-
video_out = gr.Video(label="ControlNet video result", elem_id="video-output")
|
260 |
-
|
261 |
-
with gr.Group(elem_id="share-btn-container", visible=False) as share_group:
|
262 |
-
community_icon = gr.HTML(community_icon_html)
|
263 |
-
loading_icon = gr.HTML(loading_icon_html)
|
264 |
-
share_button = gr.Button("Share to community", elem_id="share-btn")
|
265 |
-
|
266 |
-
with gr.Accordion("Detailed results", visible=False) as detailed_result:
|
267 |
-
prep_video_out = gr.Video(label="Preprocessor video result", visible=False, elem_id="prep-video-output")
|
268 |
-
files = gr.File(label="Files can be downloaded ;)", visible=False)
|
269 |
-
|
270 |
-
with gr.Column():
|
271 |
-
#status = gr.Textbox()
|
272 |
-
|
273 |
-
prompt = gr.Textbox(label="Prompt", placeholder="enter prompt", show_label=True, elem_id="prompt-in")
|
274 |
-
|
275 |
-
with gr.Row():
|
276 |
-
control_task = gr.Dropdown(label="Control Task", choices=["Canny", "Depth", "Hed", "Hough", "Normal", "Pose", "Scribble", "Seg"], value="Pose", multiselect=False, elem_id="controltask-in")
|
277 |
-
seed_inp = gr.Slider(label="Seed", minimum=0, maximum=2147483647, step=1, value=123456, elem_id="seed-in")
|
278 |
-
|
279 |
-
with gr.Row():
|
280 |
-
trim_in = gr.Slider(label="Cut video at (s)", minimun=1, maximum=5, step=1, value=1)
|
281 |
-
|
282 |
-
with gr.Accordion("Advanced Options", open=False):
|
283 |
-
with gr.Tab("Diffusion Settings"):
|
284 |
-
with gr.Row(visible=False) as canny_opt:
|
285 |
-
low_threshold = gr.Slider(label='Canny low threshold', minimum=1, maximum=255, value=100, step=1)
|
286 |
-
high_threshold = gr.Slider(label='Canny high threshold', minimum=1, maximum=255, value=200, step=1)
|
287 |
-
|
288 |
-
with gr.Row(visible=False) as hough_opt:
|
289 |
-
value_threshold = gr.Slider(label='Hough value threshold (MLSD)', minimum=0.01, maximum=2.0, value=0.1, step=0.01)
|
290 |
-
distance_threshold = gr.Slider(label='Hough distance threshold (MLSD)', minimum=0.01, maximum=20.0, value=0.1, step=0.01)
|
291 |
-
|
292 |
-
with gr.Row(visible=False) as normal_opt:
|
293 |
-
bg_threshold = gr.Slider(label='Normal background threshold', minimum=0.0, maximum=1.0, value=0.4, step=0.01)
|
294 |
-
|
295 |
-
ddim_steps = gr.Slider(label='Steps', minimum=1, maximum=100, value=20, step=1)
|
296 |
-
scale = gr.Slider(label='Guidance Scale', minimum=0.1, maximum=30.0, value=9.0, step=0.1)
|
297 |
-
|
298 |
-
with gr.Tab("GIF import"):
|
299 |
-
gif_import = gr.File(label="import a GIF instead", file_types=['.gif'])
|
300 |
-
gif_import.change(convert, gif_import, video_inp, queue=False)
|
301 |
-
|
302 |
-
with gr.Tab("Custom Model"):
|
303 |
-
current_base_model = gr.Text(label='Current base model',
|
304 |
-
value=DEFAULT_BASE_MODEL_URL)
|
305 |
-
with gr.Row():
|
306 |
-
with gr.Column():
|
307 |
-
base_model_repo = gr.Text(label='Base model repo',
|
308 |
-
max_lines=1,
|
309 |
-
placeholder=DEFAULT_BASE_MODEL_REPO,
|
310 |
-
interactive=True)
|
311 |
-
base_model_filename = gr.Text(
|
312 |
-
label='Base model file',
|
313 |
-
max_lines=1,
|
314 |
-
placeholder=DEFAULT_BASE_MODEL_FILENAME,
|
315 |
-
interactive=True)
|
316 |
-
change_base_model_button = gr.Button('Change base model')
|
317 |
-
|
318 |
-
gr.HTML(
|
319 |
-
'''<p>You can use other base models by specifying the repository name and filename.<br />
|
320 |
-
The base model must be compatible with Stable Diffusion v1.5.</p>''')
|
321 |
-
|
322 |
-
change_base_model_button.click(fn=model.set_base_model,
|
323 |
-
inputs=[
|
324 |
-
base_model_repo,
|
325 |
-
base_model_filename,
|
326 |
-
],
|
327 |
-
outputs=current_base_model, queue=False)
|
328 |
-
|
329 |
-
submit_btn = gr.Button("Generate ControlNet video")
|
330 |
-
|
331 |
-
inputs = [prompt,video_inp,control_task, seed_inp, trim_in, ddim_steps, scale, low_threshold, high_threshold, value_threshold, distance_threshold, bg_threshold, gif_import]
|
332 |
-
outputs = [video_out, detailed_result, prep_video_out, files, share_group]
|
333 |
-
#outputs = [status]
|
334 |
-
|
335 |
-
|
336 |
-
gr.HTML(article)
|
337 |
-
control_task.change(change_task_options, inputs=[control_task], outputs=[canny_opt, hough_opt, normal_opt], queue=False)
|
338 |
-
submit_btn.click(clean, inputs=[], outputs=[detailed_result, prep_video_out, video_out, files, share_group], queue=False)
|
339 |
-
submit_btn.click(infer, inputs, outputs)
|
340 |
-
share_button.click(None, [], [], _js=share_js)
|
341 |
-
|
342 |
-
|
343 |
-
|
344 |
-
demo.queue(max_size=12).launch()
|
|
|
1 |
+
from setuptools import setup, find_packages
|
2 |
+
|
3 |
+
setup(
|
4 |
+
name = 'phenaki-pytorch',
|
5 |
+
packages = find_packages(exclude=[]),
|
6 |
+
version = '0.3.0',
|
7 |
+
license='MIT',
|
8 |
+
description = 'Phenaki - Pytorch',
|
9 |
+
author = 'Phil Wang',
|
10 |
+
author_email = 'lucidrains@gmail.com',
|
11 |
+
long_description_content_type = 'text/markdown',
|
12 |
+
url = 'https://github.com/lucidrains/phenaki-pytorch',
|
13 |
+
keywords = [
|
14 |
+
'artificial intelligence',
|
15 |
+
'deep learning',
|
16 |
+
'transformers',
|
17 |
+
'attention mechanisms',
|
18 |
+
'text-to-video'
|
19 |
+
],
|
20 |
+
install_requires=[
|
21 |
+
'accelerate',
|
22 |
+
'beartype',
|
23 |
+
'einops>=0.6',
|
24 |
+
'ema-pytorch>=0.1.1',
|
25 |
+
'opencv-python',
|
26 |
+
'pillow',
|
27 |
+
'numpy',
|
28 |
+
'sentencepiece',
|
29 |
+
'torch>=1.6',
|
30 |
+
'torchtyping',
|
31 |
+
'torchvision',
|
32 |
+
'transformers>=4.20.1',
|
33 |
+
'tqdm',
|
34 |
+
'vector-quantize-pytorch>=0.10.15'
|
35 |
+
],
|
36 |
+
classifiers=[
|
37 |
+
'Development Status :: 4 - Beta',
|
38 |
+
'Intended Audience :: Developers',
|
39 |
+
'Topic :: Scientific/Engineering :: Artificial Intelligence',
|
40 |
+
'License :: OSI Approved :: MIT License',
|
41 |
+
'Programming Language :: Python :: 3.6',
|
42 |
+
],
|
43 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|