iti110 / app.py
fevot's picture
Update app.py
60eeb55 verified
import gradio as gr
import torch
from torch import nn
import cv2
import numpy as np
import json
from torchvision import models
import librosa
# Define the BirdCallRNN model
class BirdCallRNN(nn.Module):
def __init__(self, resnet, num_features, num_classes):
super(BirdCallRNN, self).__init__()
self.resnet = resnet
self.rnn = nn.LSTM(input_size=num_features, hidden_size=256, num_layers=2, batch_first=True, bidirectional=True)
self.fc = nn.Linear(512, num_classes)
def forward(self, x):
batch, seq_len, C, H, W = x.size()
x = x.view(batch * seq_len, C, H, W)
features = self.resnet(x)
features = features.view(batch, seq_len, -1)
rnn_out, _ = self.rnn(features)
output = self.fc(rnn_out[:, -1, :]) # Note: We’ll use this for single-segment sequences
return output
# Function to convert MP3 to mel spectrogram (unchanged)
def mp3_to_mel_spectrogram(mp3_file, target_shape=(128, 500), resize_shape=(224, 224)):
y, sr = librosa.load(mp3_file, sr=None)
S = librosa.feature.melspectrogram(y=y, sr=sr, n_mels=128, fmax=8000)
log_S = librosa.power_to_db(S, ref=np.max)
current_time_steps = log_S.shape[1]
target_time_steps = target_shape[1]
if current_time_steps < target_time_steps:
pad_width = target_time_steps - current_time_steps
log_S_resized = np.pad(log_S, ((0, 0), (0, pad_width)), mode='constant')
elif current_time_steps > target_time_steps:
log_S_resized = log_S[:, :target_time_steps]
else:
log_S_resized = log_S
log_S_resized = cv2.resize(log_S_resized, resize_shape, interpolation=cv2.INTER_CUBIC)
return log_S_resized
# Load class mapping globally
with open('class_mapping.json', 'r') as f:
class_names = json.load(f)
# Revised inference function to predict per segment
def infer_birdcall(model, mp3_file, segment_length=500, device="cuda"):
model.eval()
# Load audio and compute mel spectrogram
y, sr = librosa.load(mp3_file, sr=None)
S = librosa.feature.melspectrogram(y=y, sr=sr, n_mels=128, fmax=8000)
log_S = librosa.power_to_db(S, ref=np.max)
# Segment the spectrogram
num_segments = log_S.shape[1] // segment_length
if num_segments == 0:
segments = [log_S]
else:
segments = [log_S[:, i * segment_length:(i + 1) * segment_length] for i in range(num_segments)]
predictions = []
# Process each segment individually
for seg in segments:
seg_resized = cv2.resize(seg, (224, 224), interpolation=cv2.INTER_CUBIC)
seg_rgb = np.repeat(seg_resized[:, :, np.newaxis], 3, axis=-1)
# Create a tensor with batch size 1 and sequence length 1
seg_tensor = torch.from_numpy(seg_rgb).permute(2, 0, 1).float().unsqueeze(0).unsqueeze(0).to(device) # Shape: (1, 1, 3, 224, 224)
output = model(seg_tensor)
pred = torch.max(output, dim=1)[1].cpu().numpy()[0]
predicted_bird = class_names[str(pred)] # Convert pred to string to match JSON keys
predictions.append(predicted_bird)
return predictions
# Initialize the model
resnet = models.resnet50(weights='IMAGENET1K_V2')
num_features = resnet.fc.in_features
resnet.fc = nn.Identity()
num_classes = len(class_names) # Should be 114
model = BirdCallRNN(resnet, num_features, num_classes)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)
model.load_state_dict(torch.load('model_weights.pth', map_location=device))
model.eval()
# Prediction function for Gradio
def predict_bird(file_path):
predictions = infer_birdcall(model, file_path, segment_length=500, device=str(device))
# Format predictions as a numbered list
formatted_predictions = "\n".join([f"{i+1}. {pred}" for i, pred in enumerate(predictions)])
return formatted_predictions # Return formatted list of predictions
# Custom Gradio interface with additional components
def gradio_interface(file_path):
# Predict bird species
prediction = predict_bird(file_path)
# Display the uploaded MP3 file with a play button
audio_player = gr.Audio(file_path, label="Uploaded MP3 File", visible=True, autoplay=True)
# Display images with titles
bird_species_image = gr.Image("1.jpg", label="Bird Species")
bird_description_image = gr.Image("2.jpg", label="Bird Description")
bird_origins_image = gr.Image("3.jpg", label="Bird Origins")
return prediction, audio_player, bird_species_image, bird_description_image, bird_origins_image
# Launch Gradio interface
interface = gr.Interface(
fn=gradio_interface,
inputs=gr.File(label="Upload MP3 file", file_types=['.mp3']),
outputs=[
gr.Textbox(label="Predicted Bird Species"),
gr.Audio(label="Uploaded MP3 File"),
gr.Image(label="Bird Species"),
gr.Image(label="Bird Description"),
gr.Image(label="Bird Origins")
]
)
interface.launch()