fengtc commited on
Commit
64e8704
·
1 Parent(s): 9de1898

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +3 -16
app.py CHANGED
@@ -28,9 +28,6 @@ import langchain
28
  import os
29
  OPENAI_API_KEY=os.getenv('OPENAI_API_KEY')
30
 
31
-
32
-
33
-
34
  # 嵌入模型
35
  #embeddings = OpenAIEmbeddings()
36
  embeddings = HuggingFaceEmbeddings(model_name="BAAI/bge-large-en")
@@ -38,27 +35,17 @@ embeddings = HuggingFaceEmbeddings(model_name="BAAI/bge-large-en")
38
  # 加载数据
39
  #docsearch = FAISS.from_texts(texts, embeddings)
40
  docsearch = FAISS.load_local("./faiss_index", embeddings)
41
-
42
- #chain = load_qa_chain(OpenAI(temperature=0,model_name="gpt-3.5-turbo",prompt=chat_prompt), chain_type="stuff",verbose=True)
43
-
44
-
45
-
46
  template="您是回答ANSYS软件使用查询的得力助手,所有回复必需用中文"
47
-
48
  chain = load_qa_chain(OpenAI(temperature=0,model_name="gpt-3.5-turbo"), chain_type="stuff",verbose=True)
49
-
50
-
51
  def predict(message, history):
52
  history_langchain_format = []
53
- for system,human, ai in history:
54
- history_langchain_format.append(SystemMessage(content=system))
55
  history_langchain_format.append(HumanMessage(content=human))
56
  history_langchain_format.append(AIMessage(content=ai))
57
  history_langchain_format.append(HumanMessage(content=message))
58
  docs = docsearch.similarity_search(message)
59
- response = chain.run(input_documents=docs, question=message+template)
60
-
61
-
62
  partial_message = ""
63
  for chunk in response:
64
  if len(chunk[0]) != 0:
 
28
  import os
29
  OPENAI_API_KEY=os.getenv('OPENAI_API_KEY')
30
 
 
 
 
31
  # 嵌入模型
32
  #embeddings = OpenAIEmbeddings()
33
  embeddings = HuggingFaceEmbeddings(model_name="BAAI/bge-large-en")
 
35
  # 加载数据
36
  #docsearch = FAISS.from_texts(texts, embeddings)
37
  docsearch = FAISS.load_local("./faiss_index", embeddings)
 
 
 
 
 
38
  template="您是回答ANSYS软件使用查询的得力助手,所有回复必需用中文"
 
39
  chain = load_qa_chain(OpenAI(temperature=0,model_name="gpt-3.5-turbo"), chain_type="stuff",verbose=True)
 
 
40
  def predict(message, history):
41
  history_langchain_format = []
42
+ for human, ai in history:
 
43
  history_langchain_format.append(HumanMessage(content=human))
44
  history_langchain_format.append(AIMessage(content=ai))
45
  history_langchain_format.append(HumanMessage(content=message))
46
  docs = docsearch.similarity_search(message)
47
+ response = chain.run(input_documents=docs, question=message + template)
48
+
 
49
  partial_message = ""
50
  for chunk in response:
51
  if len(chunk[0]) != 0: