kbs / app.py
fengtc's picture
Update app.py
c77d9c3
raw
history blame
2.58 kB
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.text_splitter import CharacterTextSplitter
from langchain.vectorstores import FAISS
from langchain.chains.question_answering import load_qa_chain
from langchain.llms import OpenAI
from gradio import gradio as gr
from langchain.chat_models import ChatOpenAI
#from langchain.memory import ConversationBufferMemor
from langchain.schema import AIMessage, HumanMessage
from langchain import PromptTemplate, LLMChain
from langchain.llms import TextGen
import os
OPENAI_API_KEY=os.getenv('OPENAI_API_KEY')
# 嵌入模型
#embeddings = OpenAIEmbeddings()
embeddings = HuggingFaceEmbeddings(model_name="BAAI/bge-large-en")
# 加载数据
#docsearch = FAISS.from_texts(texts, embeddings)
docsearch = FAISS.load_local("./bge-large-en_faiss_index/faiss_index", embeddings)
chain = load_qa_chain(OpenAI(), chain_type="stuff",verbose=True)
prompt = "您是回答所有ANSYS软件使用查询的得力助手,如果所问的内容不在范围内,请回答“您提的问题不在本知识库内,请重新提问”,所有问题必需用中文回答"
def predict(message, history):
history_openai_format = []
for human, assistant in history:
history_openai_format.append({"role": "system", "content": prompt })
history_openai_format.append({"role": "user", "content": human })
history_openai_format.append({"role": "assistant", "content":assistant})
history_openai_format.append({"role": "user", "content": message})
response = openai.ChatCompletion.create(
model='gpt-3.5-turbo',
messages= history_openai_format,
temperature=1.0,
stream=True
)
partial_message = ""
for chunk in response:
if len(chunk['choices'][0]['delta']) != 0:
partial_message = partial_message + chunk['choices'][0]['delta']['content']
yield partial_message
gr.ChatInterface(predict,
textbox=gr.Textbox(placeholder="请输入您的问题", container=False, scale=7),
title="欢迎使用ANSYS软件AI机器人",
examples=["你是谁?", "请介绍一下Fluent 软件的用户界面说明", "请用关于春天写一首100字的诗","数学题:小红有3元钱,小红买了2斤香蕉,香蕉的价格是每斤1元。问小红一共花了多少钱?","请用表格做一份学生课程表"],
description="🦊请避免输入有违公序良俗的问题,模型可能无法回答不合适的问题🐇",).queue().launch()