kbs / app.py
fengtc's picture
Update app.py
98f2449
raw
history blame
2.37 kB
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.vectorstores import FAISS
from langchain.chains.question_answering import load_qa_chain
from langchain.llms import OpenAI
from gradio import gradio as gr
from langchain.chat_models import ChatOpenAI
from langchain import PromptTemplate, LLMChain
from langchain.llms import TextGen
from langchain.cache import InMemoryCache
from langchain.prompts.chat import (
ChatPromptTemplate,
SystemMessagePromptTemplate,
AIMessagePromptTemplate,
HumanMessagePromptTemplate,
)
from langchain.schema import (
AIMessage,
HumanMessage,
SystemMessage
)
import time
import langchain
import os
OPENAI_API_KEY=os.getenv('OPENAI_API_KEY')
# 嵌入模型
#embeddings = OpenAIEmbeddings()
embeddings = HuggingFaceEmbeddings(model_name="BAAI/bge-large-en")
# 加载数据
#docsearch = FAISS.from_texts(texts, embeddings)
docsearch = FAISS.load_local("./faiss_index", embeddings)
template="您是回答ANSYS软件使用查询的得力助手,所有回复必需用中文"
chain = load_qa_chain(OpenAI(temperature=0,model_name="gpt-3.5-turbo"), chain_type="stuff",verbose=True)
def predict(message, history):
history_langchain_format = []
for human, ai in history:
history_langchain_format.append(HumanMessage(content=human))
history_langchain_format.append(AIMessage(content=ai))
history_langchain_format.append(HumanMessage(content=message))
docs = docsearch.similarity_search(message)
response = chain.run(input_documents=docs, question=message + template)
partial_message = ""
for chunk in response:
if len(chunk[0]) != 0:
time.sleep(0.1)
partial_message = partial_message + chunk[0]
yield partial_message
langchain.llm_cache = InMemoryCache()
gr.ChatInterface(predict,
textbox=gr.Textbox(placeholder="请提问关于ANSYS软件的问题", container=False, scale=7),
title="欢迎使用ANSYS软件AI机器人",
examples=["你是谁?", "请介绍一下Fluent 软件", "create-bounding-box","ANSYS Fluent Architecture","ANSYS Fluent 的软件架构是怎么样的"],
description="请避免输入有违公序良俗的问题,模型可能无法回答不合适的问题",).queue().launch(debug=True)