Spaces:
Runtime error
Runtime error
commit
Browse filesThis view is limited to 50 files because it contains too many changes. Β
See raw diff
- .gitattributes +0 -27
- .gitignore +8 -0
- .gitmodules +9 -4
- LICENSE +21 -0
- LICENSE-NVIDIA +101 -0
- LICENSE-STYLEGAN2 +21 -0
- README.md +119 -13
- app.py +162 -99
- dnnlib/__init__.py +0 -11
- dnnlib/tflib/__init__.py +0 -20
- dnnlib/tflib/autosummary.py +0 -193
- dnnlib/tflib/custom_ops.py +0 -171
- dnnlib/tflib/network.py +0 -592
- dnnlib/tflib/ops/__init__.py +0 -9
- dnnlib/tflib/ops/fused_bias_act.cu +0 -190
- dnnlib/tflib/ops/fused_bias_act.py +0 -198
- dnnlib/tflib/ops/upfirdn_2d.cu +0 -328
- dnnlib/tflib/ops/upfirdn_2d.py +0 -366
- dnnlib/tflib/optimizer.py +0 -338
- dnnlib/tflib/tfutil.py +0 -254
- dnnlib/util.py +0 -479
- losses/color_transfer_loss.py +60 -0
- losses/joint_loss.py +167 -0
- losses/perceptual_loss.py +111 -0
- losses/reconstruction.py +119 -0
- losses/regularize_noise.py +37 -0
- torch_utils/models_face.py β model.py +79 -191
- models/__init__.py +0 -0
- models/degrade.py +122 -0
- models/encoder.py +66 -0
- models/gaussian_smoothing.py +74 -0
- models/resnet.py +99 -0
- models/vggface.py +150 -0
- {torch_utils/op_edit β op}/__init__.py +0 -2
- {torch_utils/op_edit β op}/fused_act.py +6 -19
- {torch_utils/op_edit β op}/fused_bias_act.cpp +0 -2
- {torch_utils/op_edit β op}/fused_bias_act_kernel.cu +0 -2
- {torch_utils/op_edit β op}/upfirdn2d.cpp +0 -2
- {torch_utils/op_edit β op}/upfirdn2d.py +8 -23
- op/upfirdn2d_kernel.cu +272 -0
- optim/__init__.py +15 -0
- optim/radam.py +250 -0
- requirements.txt +25 -5
- scripts/download_checkpoints.sh +14 -0
- scripts/install.sh +6 -0
- scripts/run.sh +34 -0
- tools/__init__.py +0 -0
- tools/data/__init__.py +0 -0
- tools/data/align_images.py +117 -0
- tools/initialize.py +160 -0
.gitattributes
DELETED
@@ -1,27 +0,0 @@
|
|
1 |
-
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
-
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
-
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
-
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
5 |
-
*.ftz filter=lfs diff=lfs merge=lfs -text
|
6 |
-
*.gz filter=lfs diff=lfs merge=lfs -text
|
7 |
-
*.h5 filter=lfs diff=lfs merge=lfs -text
|
8 |
-
*.joblib filter=lfs diff=lfs merge=lfs -text
|
9 |
-
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
10 |
-
*.model filter=lfs diff=lfs merge=lfs -text
|
11 |
-
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
12 |
-
*.onnx filter=lfs diff=lfs merge=lfs -text
|
13 |
-
*.ot filter=lfs diff=lfs merge=lfs -text
|
14 |
-
*.parquet filter=lfs diff=lfs merge=lfs -text
|
15 |
-
*.pb filter=lfs diff=lfs merge=lfs -text
|
16 |
-
*.pt filter=lfs diff=lfs merge=lfs -text
|
17 |
-
*.pth filter=lfs diff=lfs merge=lfs -text
|
18 |
-
*.rar filter=lfs diff=lfs merge=lfs -text
|
19 |
-
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
20 |
-
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
21 |
-
*.tflite filter=lfs diff=lfs merge=lfs -text
|
22 |
-
*.tgz filter=lfs diff=lfs merge=lfs -text
|
23 |
-
*.wasm filter=lfs diff=lfs merge=lfs -text
|
24 |
-
*.xz filter=lfs diff=lfs merge=lfs -text
|
25 |
-
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
-
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
-
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
.gitignore
CHANGED
@@ -131,3 +131,11 @@ dmypy.json
|
|
131 |
wandb/
|
132 |
*.lmdb/
|
133 |
*.pkl
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
131 |
wandb/
|
132 |
*.lmdb/
|
133 |
*.pkl
|
134 |
+
|
135 |
+
# results
|
136 |
+
results
|
137 |
+
results_old
|
138 |
+
log
|
139 |
+
checkpoint
|
140 |
+
*.pt
|
141 |
+
*.old
|
.gitmodules
CHANGED
@@ -1,4 +1,9 @@
|
|
1 |
-
[submodule "
|
2 |
-
path =
|
3 |
-
url = https://github.com/
|
4 |
-
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[submodule "third_party/face_parsing"]
|
2 |
+
path = third_party/face_parsing
|
3 |
+
url = https://github.com/Time-Travel-Rephotography/face-parsing.PyTorch.git
|
4 |
+
[submodule "models/encoder4editing"]
|
5 |
+
path = models/encoder4editing
|
6 |
+
url = https://github.com/Time-Travel-Rephotography/encoder4editing.git
|
7 |
+
[submodule "losses/contextual_loss"]
|
8 |
+
path = losses/contextual_loss
|
9 |
+
url = https://github.com/Time-Travel-Rephotography/contextual_loss_pytorch.git
|
LICENSE
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
MIT License
|
2 |
+
|
3 |
+
Copyright (c) 2020 Time-Travel-Rephotography
|
4 |
+
|
5 |
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
6 |
+
of this software and associated documentation files (the "Software"), to deal
|
7 |
+
in the Software without restriction, including without limitation the rights
|
8 |
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
9 |
+
copies of the Software, and to permit persons to whom the Software is
|
10 |
+
furnished to do so, subject to the following conditions:
|
11 |
+
|
12 |
+
The above copyright notice and this permission notice shall be included in all
|
13 |
+
copies or substantial portions of the Software.
|
14 |
+
|
15 |
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
16 |
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
17 |
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
18 |
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
19 |
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
20 |
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
21 |
+
SOFTWARE.
|
LICENSE-NVIDIA
ADDED
@@ -0,0 +1,101 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Copyright (c) 2019, NVIDIA Corporation. All rights reserved.
|
2 |
+
|
3 |
+
|
4 |
+
Nvidia Source Code License-NC
|
5 |
+
|
6 |
+
=======================================================================
|
7 |
+
|
8 |
+
1. Definitions
|
9 |
+
|
10 |
+
"Licensor" means any person or entity that distributes its Work.
|
11 |
+
|
12 |
+
"Software" means the original work of authorship made available under
|
13 |
+
this License.
|
14 |
+
|
15 |
+
"Work" means the Software and any additions to or derivative works of
|
16 |
+
the Software that are made available under this License.
|
17 |
+
|
18 |
+
"Nvidia Processors" means any central processing unit (CPU), graphics
|
19 |
+
processing unit (GPU), field-programmable gate array (FPGA),
|
20 |
+
application-specific integrated circuit (ASIC) or any combination
|
21 |
+
thereof designed, made, sold, or provided by Nvidia or its affiliates.
|
22 |
+
|
23 |
+
The terms "reproduce," "reproduction," "derivative works," and
|
24 |
+
"distribution" have the meaning as provided under U.S. copyright law;
|
25 |
+
provided, however, that for the purposes of this License, derivative
|
26 |
+
works shall not include works that remain separable from, or merely
|
27 |
+
link (or bind by name) to the interfaces of, the Work.
|
28 |
+
|
29 |
+
Works, including the Software, are "made available" under this License
|
30 |
+
by including in or with the Work either (a) a copyright notice
|
31 |
+
referencing the applicability of this License to the Work, or (b) a
|
32 |
+
copy of this License.
|
33 |
+
|
34 |
+
2. License Grants
|
35 |
+
|
36 |
+
2.1 Copyright Grant. Subject to the terms and conditions of this
|
37 |
+
License, each Licensor grants to you a perpetual, worldwide,
|
38 |
+
non-exclusive, royalty-free, copyright license to reproduce,
|
39 |
+
prepare derivative works of, publicly display, publicly perform,
|
40 |
+
sublicense and distribute its Work and any resulting derivative
|
41 |
+
works in any form.
|
42 |
+
|
43 |
+
3. Limitations
|
44 |
+
|
45 |
+
3.1 Redistribution. You may reproduce or distribute the Work only
|
46 |
+
if (a) you do so under this License, (b) you include a complete
|
47 |
+
copy of this License with your distribution, and (c) you retain
|
48 |
+
without modification any copyright, patent, trademark, or
|
49 |
+
attribution notices that are present in the Work.
|
50 |
+
|
51 |
+
3.2 Derivative Works. You may specify that additional or different
|
52 |
+
terms apply to the use, reproduction, and distribution of your
|
53 |
+
derivative works of the Work ("Your Terms") only if (a) Your Terms
|
54 |
+
provide that the use limitation in Section 3.3 applies to your
|
55 |
+
derivative works, and (b) you identify the specific derivative
|
56 |
+
works that are subject to Your Terms. Notwithstanding Your Terms,
|
57 |
+
this License (including the redistribution requirements in Section
|
58 |
+
3.1) will continue to apply to the Work itself.
|
59 |
+
|
60 |
+
3.3 Use Limitation. The Work and any derivative works thereof only
|
61 |
+
may be used or intended for use non-commercially. The Work or
|
62 |
+
derivative works thereof may be used or intended for use by Nvidia
|
63 |
+
or its affiliates commercially or non-commercially. As used herein,
|
64 |
+
"non-commercially" means for research or evaluation purposes only.
|
65 |
+
|
66 |
+
3.4 Patent Claims. If you bring or threaten to bring a patent claim
|
67 |
+
against any Licensor (including any claim, cross-claim or
|
68 |
+
counterclaim in a lawsuit) to enforce any patents that you allege
|
69 |
+
are infringed by any Work, then your rights under this License from
|
70 |
+
such Licensor (including the grants in Sections 2.1 and 2.2) will
|
71 |
+
terminate immediately.
|
72 |
+
|
73 |
+
3.5 Trademarks. This License does not grant any rights to use any
|
74 |
+
Licensor's or its affiliates' names, logos, or trademarks, except
|
75 |
+
as necessary to reproduce the notices described in this License.
|
76 |
+
|
77 |
+
3.6 Termination. If you violate any term of this License, then your
|
78 |
+
rights under this License (including the grants in Sections 2.1 and
|
79 |
+
2.2) will terminate immediately.
|
80 |
+
|
81 |
+
4. Disclaimer of Warranty.
|
82 |
+
|
83 |
+
THE WORK IS PROVIDED "AS IS" WITHOUT WARRANTIES OR CONDITIONS OF ANY
|
84 |
+
KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WARRANTIES OR CONDITIONS OF
|
85 |
+
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE OR
|
86 |
+
NON-INFRINGEMENT. YOU BEAR THE RISK OF UNDERTAKING ANY ACTIVITIES UNDER
|
87 |
+
THIS LICENSE.
|
88 |
+
|
89 |
+
5. Limitation of Liability.
|
90 |
+
|
91 |
+
EXCEPT AS PROHIBITED BY APPLICABLE LAW, IN NO EVENT AND UNDER NO LEGAL
|
92 |
+
THEORY, WHETHER IN TORT (INCLUDING NEGLIGENCE), CONTRACT, OR OTHERWISE
|
93 |
+
SHALL ANY LICENSOR BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY DIRECT,
|
94 |
+
INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES ARISING OUT OF
|
95 |
+
OR RELATED TO THIS LICENSE, THE USE OR INABILITY TO USE THE WORK
|
96 |
+
(INCLUDING BUT NOT LIMITED TO LOSS OF GOODWILL, BUSINESS INTERRUPTION,
|
97 |
+
LOST PROFITS OR DATA, COMPUTER FAILURE OR MALFUNCTION, OR ANY OTHER
|
98 |
+
COMMERCIAL DAMAGES OR LOSSES), EVEN IF THE LICENSOR HAS BEEN ADVISED OF
|
99 |
+
THE POSSIBILITY OF SUCH DAMAGES.
|
100 |
+
|
101 |
+
=======================================================================
|
LICENSE-STYLEGAN2
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
MIT License
|
2 |
+
|
3 |
+
Copyright (c) 2019 Kim Seonghyeon
|
4 |
+
|
5 |
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
6 |
+
of this software and associated documentation files (the "Software"), to deal
|
7 |
+
in the Software without restriction, including without limitation the rights
|
8 |
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
9 |
+
copies of the Software, and to permit persons to whom the Software is
|
10 |
+
furnished to do so, subject to the following conditions:
|
11 |
+
|
12 |
+
The above copyright notice and this permission notice shall be included in all
|
13 |
+
copies or substantial portions of the Software.
|
14 |
+
|
15 |
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
16 |
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
17 |
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
18 |
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
19 |
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
20 |
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
21 |
+
SOFTWARE.
|
README.md
CHANGED
@@ -1,13 +1,119 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# [SIGGRAPH Asia 2021] Time-Travel Rephotography
|
2 |
+
<a href="https://arxiv.org/abs/2012.12261"><img src="https://img.shields.io/badge/arXiv-2008.00951-b31b1b.svg"></a>
|
3 |
+
<a href="https://opensource.org/licenses/MIT"><img src="https://img.shields.io/badge/License-MIT-yellow.svg"></a>
|
4 |
+
[![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/15D2WIF_vE2l48ddxEx45cM3RykZwQXM8?usp=sharing)
|
5 |
+
### [[Project Website](https://time-travel-rephotography.github.io/)]
|
6 |
+
|
7 |
+
<p align='center'>
|
8 |
+
<img src="time-travel-rephotography.gif" width='100%'/>
|
9 |
+
</p>
|
10 |
+
|
11 |
+
Many historical people were only ever captured by old, faded, black and white photos, that are distorted due to the limitations of early cameras and the passage of time. This paper simulates traveling back in time with a modern camera to rephotograph famous subjects. Unlike conventional image restoration filters which apply independent operations like denoising, colorization, and superresolution, we leverage the StyleGAN2 framework to project old photos into the space of modern high-resolution photos, achieving all of these effects in a unified framework. A unique challenge with this approach is retaining the identity and pose of the subject in the original photo, while discarding the many artifacts frequently seen in low-quality antique photos. Our comparisons to current state-of-the-art restoration filters show significant improvements and compelling results for a variety of important historical people.
|
12 |
+
<br/>
|
13 |
+
|
14 |
+
**Time-Travel Rephotography**
|
15 |
+
<br/>
|
16 |
+
[Xuan Luo](https://roxanneluo.github.io),
|
17 |
+
[Xuaner Zhang](https://people.eecs.berkeley.edu/~cecilia77/),
|
18 |
+
[Paul Yoo](https://www.linkedin.com/in/paul-yoo-768a3715b),
|
19 |
+
[Ricardo Martin-Brualla](http://www.ricardomartinbrualla.com/),
|
20 |
+
[Jason Lawrence](http://jasonlawrence.info/), and
|
21 |
+
[Steven M. Seitz](https://homes.cs.washington.edu/~seitz/)
|
22 |
+
<br/>
|
23 |
+
In SIGGRAPH Asia 2021.
|
24 |
+
|
25 |
+
## Demo
|
26 |
+
We provide an easy-to-get-started demo using Google Colab!
|
27 |
+
The Colab will allow you to try our method on the sample Abraham Lincoln photo or **your own photos** using Cloud GPUs on Google Colab.
|
28 |
+
|
29 |
+
[![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/15D2WIF_vE2l48ddxEx45cM3RykZwQXM8?usp=sharing)
|
30 |
+
|
31 |
+
Or you can run our method on your own machine following the instructions below.
|
32 |
+
|
33 |
+
## Prerequisite
|
34 |
+
- Pull third-party packages.
|
35 |
+
```
|
36 |
+
git submodule update --init --recursive
|
37 |
+
```
|
38 |
+
- Install python packages.
|
39 |
+
```
|
40 |
+
conda create --name rephotography python=3.8.5
|
41 |
+
conda activate rephotography
|
42 |
+
conda install pytorch==1.4.0 torchvision==0.5.0 cudatoolkit=10.1 -c pytorch
|
43 |
+
pip install -r requirements.txt
|
44 |
+
```
|
45 |
+
|
46 |
+
## Quick Start
|
47 |
+
Run our method on the example photo of Abraham Lincoln.
|
48 |
+
- Download models:
|
49 |
+
```
|
50 |
+
./scripts/download_checkpoints.sh
|
51 |
+
```
|
52 |
+
- Run:
|
53 |
+
```
|
54 |
+
./scripts/run.sh b "dataset/Abraham Lincoln_01.png" 0.75
|
55 |
+
```
|
56 |
+
- You can inspect the optimization process by
|
57 |
+
```
|
58 |
+
tensorboard --logdir "log/Abraham Lincoln_01"
|
59 |
+
```
|
60 |
+
- You can find your results as below.
|
61 |
+
```
|
62 |
+
results/
|
63 |
+
Abraham Lincoln_01/ # intermediate outputs for histogram matching and face parsing
|
64 |
+
Abraham Lincoln_01_b.png # the input after matching the histogram of the sibling image
|
65 |
+
Abraham Lincoln_01-b-G0.75-init(10,18)-s256-vgg1-vggface0.3-eye0.1-color1.0e+10-cx0.1(relu3_4,relu2_2,relu1_2)-NR5.0e+04-lr0.1_0.01-c32-wp(250,750)-init.png # the sibling image
|
66 |
+
Abraham Lincoln_01-b-G0.75-init(10,18)-s256-vgg1-vggface0.3-eye0.1-color1.0e+10-cx0.1(relu3_4,relu2_2,relu1_2)-NR5.0e+04-lr0.1_0.01-c32-wp(250,750)-init.pt # the sibing latent codes and initialized noise maps
|
67 |
+
Abraham Lincoln_01-b-G0.75-init(10,18)-s256-vgg1-vggface0.3-eye0.1-color1.0e+10-cx0.1(relu3_4,relu2_2,relu1_2)-NR5.0e+04-lr0.1_0.01-c32-wp(250,750).png # the output result
|
68 |
+
Abraham Lincoln_01-b-G0.75-init(10,18)-s256-vgg1-vggface0.3-eye0.1-color1.0e+10-cx0.1(relu3_4,relu2_2,relu1_2)-NR5.0e+04-lr0.1_0.01-c32-wp(250,750).pt # the final optimized latent codes and noise maps
|
69 |
+
Abraham Lincoln_01-b-G0.75-init(10,18)-s256-vgg1-vggface0.3-eye0.1-color1.0e+10-cx0.1(relu3_4,relu2_2,relu1_2)-NR5.0e+04-lr0.1_0.01-c32-wp(250,750)-rand.png # the result with the final latent codes but random noise maps
|
70 |
+
|
71 |
+
```
|
72 |
+
|
73 |
+
## Run on Your Own Image
|
74 |
+
- Crop and align the head regions of your images:
|
75 |
+
```
|
76 |
+
python -m tools.data.align_images <input_raw_image_dir> <aligned_image_dir>
|
77 |
+
```
|
78 |
+
- Run:
|
79 |
+
```
|
80 |
+
./scripts/run.sh <spectral_sensitivity> <input_image_path> <blur_radius>
|
81 |
+
```
|
82 |
+
The `spectral_sensitivity` can be `b` (blue-sensitive), `gb` (orthochromatic), or `g` (panchromatic). You can roughly estimate the `spectral_sensitivity` of your photo as follows. Use the *blue-sensitive* model for photos before 1873, manually select between blue-sensitive and *orthochromatic* for images from 1873 to 1906 and among all models for photos taken afterwards.
|
83 |
+
|
84 |
+
The `blur_radius` is the estimated gaussian blur radius in pixels if the input photot is resized to 1024x1024.
|
85 |
+
|
86 |
+
## Historical Wiki Face Dataset
|
87 |
+
| Path | Size | Description |
|
88 |
+
|----------- | ----------- | ----------- |
|
89 |
+
| [Historical Wiki Face Dataset.zip](https://drive.google.com/open?id=1mgC2U7quhKSz_lTL97M-0cPrIILTiUCE&authuser=xuanluo%40cs.washington.edu&usp=drive_fs)| 148 MB | Images|
|
90 |
+
| [spectral_sensitivity.json](https://drive.google.com/open?id=1n3Bqd8G0g-wNpshlgoZiOMXxLlOycAXr&authuser=xuanluo%40cs.washington.edu&usp=drive_fs)| 6 KB | Spectral sensitivity (`b`, `gb`, or `g`). |
|
91 |
+
| [blur_radius.json](https://drive.google.com/open?id=1n4vUsbQo2BcxtKVMGfD1wFHaINzEmAVP&authuser=xuanluo%40cs.washington.edu&usp=drive_fs)| 6 KB | Blur radius in pixels|
|
92 |
+
|
93 |
+
The `json`s are dictionares that map input names to the corresponding spectral sensitivity or blur radius.
|
94 |
+
Due to copyright constraints, `Historical Wiki Face Dataset.zip` contains all images in the *Historical Wiki Face Dataset* that were used in our user study except the photo of [Mao Zedong](https://en.wikipedia.org/wiki/File:Mao_Zedong_in_1959_%28cropped%29.jpg). You can download it separately and crop it as [above](#run-on-your-own-image).
|
95 |
+
|
96 |
+
## Citation
|
97 |
+
If you find our code useful, please consider citing our paper:
|
98 |
+
```
|
99 |
+
@article{Luo-Rephotography-2021,
|
100 |
+
author = {Luo, Xuan and Zhang, Xuaner and Yoo, Paul and Martin-Brualla, Ricardo and Lawrence, Jason and Seitz, Steven M.},
|
101 |
+
title = {Time-Travel Rephotography},
|
102 |
+
journal = {ACM Transactions on Graphics (Proceedings of ACM SIGGRAPH Asia 2021)},
|
103 |
+
publisher = {ACM New York, NY, USA},
|
104 |
+
volume = {40},
|
105 |
+
number = {6},
|
106 |
+
articleno = {213},
|
107 |
+
doi = {https://doi.org/10.1145/3478513.3480485},
|
108 |
+
year = {2021},
|
109 |
+
month = {12}
|
110 |
+
}
|
111 |
+
```
|
112 |
+
|
113 |
+
## License
|
114 |
+
This work is licensed under MIT License. See [LICENSE](LICENSE) for details.
|
115 |
+
|
116 |
+
Codes for the StyleGAN2 model come from [https://github.com/rosinality/stylegan2-pytorch](https://github.com/rosinality/stylegan2-pytorch).
|
117 |
+
|
118 |
+
## Acknowledgments
|
119 |
+
We thank [Nick Brandreth](https://www.nickbrandreth.com/) for capturing the dry plate photos. We thank Bo Zhang, Qingnan Fan, Roy Or-El, Aleksander Holynski and Keunhong Park for insightful advice.
|
app.py
CHANGED
@@ -1,109 +1,172 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
from __future__ import annotations
|
4 |
-
|
5 |
-
import argparse
|
6 |
-
import functools
|
7 |
import os
|
8 |
-
import
|
|
|
9 |
import sys
|
|
|
|
|
|
|
|
|
10 |
|
11 |
-
import
|
12 |
import numpy as np
|
|
|
13 |
import torch
|
14 |
-
import
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
seed = int(np.clip(seed, 0, np.iinfo(np.uint32).max))
|
53 |
-
|
54 |
-
z = generate_z(model.z_dim, seed, device)
|
55 |
-
label = torch.zeros([1, model.c_dim], device=device)
|
56 |
-
|
57 |
-
out = model(z, label, truncation_psi=truncation_psi, force_fp32=True)
|
58 |
-
out = (out.permute(0, 2, 3, 1) * 127.5 + 128).clamp(0, 255).to(torch.uint8)
|
59 |
-
return out[0].cpu().numpy()
|
60 |
-
|
61 |
-
|
62 |
-
def load_model(file_name: str, device: torch.device) -> nn.Module:
|
63 |
-
path = hf_hub_download('feng2022/Time-TravelRephotography',
|
64 |
-
f'{file_name}',
|
65 |
-
use_auth_token=TOKEN)
|
66 |
-
with open(path, 'rb') as f:
|
67 |
-
model = pickle.load(f)['G_ema']
|
68 |
-
model.eval()
|
69 |
-
model.to(device)
|
70 |
-
with torch.inference_mode():
|
71 |
-
z = torch.zeros((1, model.z_dim)).to(device)
|
72 |
-
label = torch.zeros([1, model.c_dim], device=device)
|
73 |
-
model(z, label, force_fp32=True)
|
74 |
-
return model
|
75 |
-
|
76 |
-
|
77 |
-
def main():
|
78 |
-
args = parse_args()
|
79 |
-
device = torch.device(args.device)
|
80 |
-
|
81 |
-
model = load_model('stylegan_human_v2_1024.pkl', device)
|
82 |
|
83 |
-
|
84 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
85 |
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
allow_flagging=args.allow_flagging,
|
99 |
-
live=args.live,
|
100 |
-
).launch(
|
101 |
-
enable_queue=args.enable_queue,
|
102 |
-
server_port=args.port,
|
103 |
-
share=args.share,
|
104 |
)
|
105 |
|
106 |
|
107 |
-
|
108 |
-
|
109 |
-
|
|
|
|
|
|
1 |
+
from argparse import Namespace
|
|
|
|
|
|
|
|
|
|
|
2 |
import os
|
3 |
+
from os.path import join as pjoin
|
4 |
+
import random
|
5 |
import sys
|
6 |
+
from typing import (
|
7 |
+
Iterable,
|
8 |
+
Optional,
|
9 |
+
)
|
10 |
|
11 |
+
import cv2
|
12 |
import numpy as np
|
13 |
+
from PIL import Image
|
14 |
import torch
|
15 |
+
from torch.utils.tensorboard import SummaryWriter
|
16 |
+
from torchvision.transforms import (
|
17 |
+
Compose,
|
18 |
+
Grayscale,
|
19 |
+
Resize,
|
20 |
+
ToTensor,
|
21 |
+
Normalize,
|
22 |
+
)
|
23 |
+
|
24 |
+
from losses.joint_loss import JointLoss
|
25 |
+
from model import Generator
|
26 |
+
from tools.initialize import Initializer
|
27 |
+
from tools.match_skin_histogram import match_skin_histogram
|
28 |
+
from utils.projector_arguments import ProjectorArguments
|
29 |
+
from utils import torch_helpers as th
|
30 |
+
from utils.torch_helpers import make_image
|
31 |
+
from utils.misc import stem
|
32 |
+
from utils.optimize import Optimizer
|
33 |
+
from models.degrade import (
|
34 |
+
Degrade,
|
35 |
+
Downsample,
|
36 |
+
)
|
37 |
+
|
38 |
+
|
39 |
+
def set_random_seed(seed: int):
|
40 |
+
# FIXME (xuanluo): this setup still allows randomness somehow
|
41 |
+
torch.manual_seed(seed)
|
42 |
+
random.seed(seed)
|
43 |
+
np.random.seed(seed)
|
44 |
+
|
45 |
+
|
46 |
+
def read_images(paths: str, max_size: Optional[int] = None):
|
47 |
+
transform = Compose(
|
48 |
+
[
|
49 |
+
Grayscale(),
|
50 |
+
ToTensor(),
|
51 |
+
]
|
52 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
53 |
|
54 |
+
imgs = []
|
55 |
+
for path in paths:
|
56 |
+
img = Image.open(path)
|
57 |
+
if max_size is not None and img.width > max_size:
|
58 |
+
img = img.resize((max_size, max_size))
|
59 |
+
img = transform(img)
|
60 |
+
imgs.append(img)
|
61 |
+
imgs = torch.stack(imgs, 0)
|
62 |
+
return imgs
|
63 |
+
|
64 |
+
|
65 |
+
def normalize(img: torch.Tensor, mean=0.5, std=0.5):
|
66 |
+
"""[0, 1] -> [-1, 1]"""
|
67 |
+
return (img - mean) / std
|
68 |
+
|
69 |
+
|
70 |
+
def create_generator(args: Namespace, device: torch.device):
|
71 |
+
generator = Generator(args.generator_size, 512, 8)
|
72 |
+
generator.load_state_dict(torch.load(args.ckpt)['g_ema'], strict=False)
|
73 |
+
generator.eval()
|
74 |
+
generator = generator.to(device)
|
75 |
+
return generator
|
76 |
+
|
77 |
+
|
78 |
+
def save(
|
79 |
+
path_prefixes: Iterable[str],
|
80 |
+
imgs: torch.Tensor, # BCHW
|
81 |
+
latents: torch.Tensor,
|
82 |
+
noises: torch.Tensor,
|
83 |
+
imgs_rand: Optional[torch.Tensor] = None,
|
84 |
+
):
|
85 |
+
assert len(path_prefixes) == len(imgs) and len(latents) == len(path_prefixes)
|
86 |
+
if imgs_rand is not None:
|
87 |
+
assert len(imgs) == len(imgs_rand)
|
88 |
+
imgs_arr = make_image(imgs)
|
89 |
+
for path_prefix, img, latent, noise in zip(path_prefixes, imgs_arr, latents, noises):
|
90 |
+
os.makedirs(os.path.dirname(path_prefix), exist_ok=True)
|
91 |
+
cv2.imwrite(path_prefix + ".png", img[...,::-1])
|
92 |
+
torch.save({"latent": latent.detach().cpu(), "noise": noise.detach().cpu()},
|
93 |
+
path_prefix + ".pt")
|
94 |
+
|
95 |
+
if imgs_rand is not None:
|
96 |
+
imgs_arr = make_image(imgs_rand)
|
97 |
+
for path_prefix, img in zip(path_prefixes, imgs_arr):
|
98 |
+
cv2.imwrite(path_prefix + "-rand.png", img[...,::-1])
|
99 |
+
|
100 |
+
|
101 |
+
def main(args):
|
102 |
+
opt_str = ProjectorArguments.to_string(args)
|
103 |
+
print(opt_str)
|
104 |
+
|
105 |
+
if args.rand_seed is not None:
|
106 |
+
set_random_seed(args.rand_seed)
|
107 |
+
device = th.device()
|
108 |
+
|
109 |
+
# read inputs. TODO imgs_orig has channel 1
|
110 |
+
imgs_orig = read_images([args.input], max_size=args.generator_size).to(device)
|
111 |
+
imgs = normalize(imgs_orig) # actually this will be overwritten by the histogram matching result
|
112 |
+
|
113 |
+
# initialize
|
114 |
+
with torch.no_grad():
|
115 |
+
init = Initializer(args).to(device)
|
116 |
+
latent_init = init(imgs_orig)
|
117 |
+
|
118 |
+
# create generator
|
119 |
+
generator = create_generator(args, device)
|
120 |
+
|
121 |
+
# init noises
|
122 |
+
with torch.no_grad():
|
123 |
+
noises_init = generator.make_noise()
|
124 |
+
|
125 |
+
# create a new input by matching the input's histogram to the sibling image
|
126 |
+
with torch.no_grad():
|
127 |
+
sibling, _, sibling_rgbs = generator([latent_init], input_is_latent=True, noise=noises_init)
|
128 |
+
mh_dir = pjoin(args.results_dir, stem(args.input))
|
129 |
+
imgs = match_skin_histogram(
|
130 |
+
imgs, sibling,
|
131 |
+
args.spectral_sensitivity,
|
132 |
+
pjoin(mh_dir, "input_sibling"),
|
133 |
+
pjoin(mh_dir, "skin_mask"),
|
134 |
+
matched_hist_fn=mh_dir.rstrip(os.sep) + f"_{args.spectral_sensitivity}.png",
|
135 |
+
normalize=normalize,
|
136 |
+
).to(device)
|
137 |
+
torch.cuda.empty_cache()
|
138 |
+
# TODO imgs has channel 3
|
139 |
+
|
140 |
+
degrade = Degrade(args).to(device)
|
141 |
+
|
142 |
+
rgb_levels = generator.get_latent_size(args.coarse_min) // 2 + len(args.wplus_step) - 1
|
143 |
+
criterion = JointLoss(
|
144 |
+
args, imgs,
|
145 |
+
sibling=sibling.detach(), sibling_rgbs=sibling_rgbs[:rgb_levels]).to(device)
|
146 |
+
|
147 |
+
# save initialization
|
148 |
+
save(
|
149 |
+
[pjoin(args.results_dir, f"{stem(args.input)}-{opt_str}-init")],
|
150 |
+
sibling, latent_init, noises_init,
|
151 |
+
)
|
152 |
|
153 |
+
writer = SummaryWriter(pjoin(args.log_dir, f"{stem(args.input)}/{opt_str}"))
|
154 |
+
# start optimize
|
155 |
+
latent, noises = Optimizer.optimize(generator, criterion, degrade, imgs, latent_init, noises_init, args, writer=writer)
|
156 |
+
|
157 |
+
# generate output
|
158 |
+
img_out, _, _ = generator([latent], input_is_latent=True, noise=noises)
|
159 |
+
img_out_rand_noise, _, _ = generator([latent], input_is_latent=True)
|
160 |
+
# save output
|
161 |
+
save(
|
162 |
+
[pjoin(args.results_dir, f"{stem(args.input)}-{opt_str}")],
|
163 |
+
img_out, latent, noises,
|
164 |
+
imgs_rand=img_out_rand_noise
|
|
|
|
|
|
|
|
|
|
|
|
|
165 |
)
|
166 |
|
167 |
|
168 |
+
def parse_args():
|
169 |
+
return ProjectorArguments().parse()
|
170 |
+
|
171 |
+
if __name__ == "__main__":
|
172 |
+
sys.exit(main(parse_args()))
|
dnnlib/__init__.py
DELETED
@@ -1,11 +0,0 @@
|
|
1 |
-
ο»Ώ# Copyright (c) SenseTime Research. All rights reserved.
|
2 |
-
|
3 |
-
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved.
|
4 |
-
#
|
5 |
-
# NVIDIA CORPORATION and its licensors retain all intellectual property
|
6 |
-
# and proprietary rights in and to this software, related documentation
|
7 |
-
# and any modifications thereto. Any use, reproduction, disclosure or
|
8 |
-
# distribution of this software and related documentation without an express
|
9 |
-
# license agreement from NVIDIA CORPORATION is strictly prohibited.
|
10 |
-
|
11 |
-
from .util import EasyDict, make_cache_dir_path
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
dnnlib/tflib/__init__.py
DELETED
@@ -1,20 +0,0 @@
|
|
1 |
-
# Copyright (c) SenseTime Research. All rights reserved.
|
2 |
-
|
3 |
-
# Copyright (c) 2019, NVIDIA Corporation. All rights reserved.
|
4 |
-
#
|
5 |
-
# This work is made available under the Nvidia Source Code License-NC.
|
6 |
-
# To view a copy of this license, visit
|
7 |
-
# https://nvlabs.github.io/stylegan2/license.html
|
8 |
-
|
9 |
-
from . import autosummary
|
10 |
-
from . import network
|
11 |
-
from . import optimizer
|
12 |
-
from . import tfutil
|
13 |
-
from . import custom_ops
|
14 |
-
|
15 |
-
from .tfutil import *
|
16 |
-
from .network import Network
|
17 |
-
|
18 |
-
from .optimizer import Optimizer
|
19 |
-
|
20 |
-
from .custom_ops import get_plugin
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
dnnlib/tflib/autosummary.py
DELETED
@@ -1,193 +0,0 @@
|
|
1 |
-
# Copyright (c) SenseTime Research. All rights reserved.
|
2 |
-
|
3 |
-
# Copyright (c) 2019, NVIDIA Corporation. All rights reserved.
|
4 |
-
#
|
5 |
-
# This work is made available under the Nvidia Source Code License-NC.
|
6 |
-
# To view a copy of this license, visit
|
7 |
-
# https://nvlabs.github.io/stylegan2/license.html
|
8 |
-
|
9 |
-
"""Helper for adding automatically tracked values to Tensorboard.
|
10 |
-
|
11 |
-
Autosummary creates an identity op that internally keeps track of the input
|
12 |
-
values and automatically shows up in TensorBoard. The reported value
|
13 |
-
represents an average over input components. The average is accumulated
|
14 |
-
constantly over time and flushed when save_summaries() is called.
|
15 |
-
|
16 |
-
Notes:
|
17 |
-
- The output tensor must be used as an input for something else in the
|
18 |
-
graph. Otherwise, the autosummary op will not get executed, and the average
|
19 |
-
value will not get accumulated.
|
20 |
-
- It is perfectly fine to include autosummaries with the same name in
|
21 |
-
several places throughout the graph, even if they are executed concurrently.
|
22 |
-
- It is ok to also pass in a python scalar or numpy array. In this case, it
|
23 |
-
is added to the average immediately.
|
24 |
-
"""
|
25 |
-
|
26 |
-
from collections import OrderedDict
|
27 |
-
import numpy as np
|
28 |
-
import tensorflow as tf
|
29 |
-
from tensorboard import summary as summary_lib
|
30 |
-
from tensorboard.plugins.custom_scalar import layout_pb2
|
31 |
-
|
32 |
-
from . import tfutil
|
33 |
-
from .tfutil import TfExpression
|
34 |
-
from .tfutil import TfExpressionEx
|
35 |
-
|
36 |
-
# Enable "Custom scalars" tab in TensorBoard for advanced formatting.
|
37 |
-
# Disabled by default to reduce tfevents file size.
|
38 |
-
enable_custom_scalars = False
|
39 |
-
|
40 |
-
_dtype = tf.float64
|
41 |
-
_vars = OrderedDict() # name => [var, ...]
|
42 |
-
_immediate = OrderedDict() # name => update_op, update_value
|
43 |
-
_finalized = False
|
44 |
-
_merge_op = None
|
45 |
-
|
46 |
-
|
47 |
-
def _create_var(name: str, value_expr: TfExpression) -> TfExpression:
|
48 |
-
"""Internal helper for creating autosummary accumulators."""
|
49 |
-
assert not _finalized
|
50 |
-
name_id = name.replace("/", "_")
|
51 |
-
v = tf.cast(value_expr, _dtype)
|
52 |
-
|
53 |
-
if v.shape.is_fully_defined():
|
54 |
-
size = np.prod(v.shape.as_list())
|
55 |
-
size_expr = tf.constant(size, dtype=_dtype)
|
56 |
-
else:
|
57 |
-
size = None
|
58 |
-
size_expr = tf.reduce_prod(tf.cast(tf.shape(v), _dtype))
|
59 |
-
|
60 |
-
if size == 1:
|
61 |
-
if v.shape.ndims != 0:
|
62 |
-
v = tf.reshape(v, [])
|
63 |
-
v = [size_expr, v, tf.square(v)]
|
64 |
-
else:
|
65 |
-
v = [size_expr, tf.reduce_sum(v), tf.reduce_sum(tf.square(v))]
|
66 |
-
v = tf.cond(tf.is_finite(v[1]), lambda: tf.stack(v), lambda: tf.zeros(3, dtype=_dtype))
|
67 |
-
|
68 |
-
with tfutil.absolute_name_scope("Autosummary/" + name_id), tf.control_dependencies(None):
|
69 |
-
var = tf.Variable(tf.zeros(3, dtype=_dtype), trainable=False) # [sum(1), sum(x), sum(x**2)]
|
70 |
-
update_op = tf.cond(tf.is_variable_initialized(var), lambda: tf.assign_add(var, v), lambda: tf.assign(var, v))
|
71 |
-
|
72 |
-
if name in _vars:
|
73 |
-
_vars[name].append(var)
|
74 |
-
else:
|
75 |
-
_vars[name] = [var]
|
76 |
-
return update_op
|
77 |
-
|
78 |
-
|
79 |
-
def autosummary(name: str, value: TfExpressionEx, passthru: TfExpressionEx = None, condition: TfExpressionEx = True) -> TfExpressionEx:
|
80 |
-
"""Create a new autosummary.
|
81 |
-
|
82 |
-
Args:
|
83 |
-
name: Name to use in TensorBoard
|
84 |
-
value: TensorFlow expression or python value to track
|
85 |
-
passthru: Optionally return this TF node without modifications but tack an autosummary update side-effect to this node.
|
86 |
-
|
87 |
-
Example use of the passthru mechanism:
|
88 |
-
|
89 |
-
n = autosummary('l2loss', loss, passthru=n)
|
90 |
-
|
91 |
-
This is a shorthand for the following code:
|
92 |
-
|
93 |
-
with tf.control_dependencies([autosummary('l2loss', loss)]):
|
94 |
-
n = tf.identity(n)
|
95 |
-
"""
|
96 |
-
tfutil.assert_tf_initialized()
|
97 |
-
name_id = name.replace("/", "_")
|
98 |
-
|
99 |
-
if tfutil.is_tf_expression(value):
|
100 |
-
with tf.name_scope("summary_" + name_id), tf.device(value.device):
|
101 |
-
condition = tf.convert_to_tensor(condition, name='condition')
|
102 |
-
update_op = tf.cond(condition, lambda: tf.group(_create_var(name, value)), tf.no_op)
|
103 |
-
with tf.control_dependencies([update_op]):
|
104 |
-
return tf.identity(value if passthru is None else passthru)
|
105 |
-
|
106 |
-
else: # python scalar or numpy array
|
107 |
-
assert not tfutil.is_tf_expression(passthru)
|
108 |
-
assert not tfutil.is_tf_expression(condition)
|
109 |
-
if condition:
|
110 |
-
if name not in _immediate:
|
111 |
-
with tfutil.absolute_name_scope("Autosummary/" + name_id), tf.device(None), tf.control_dependencies(None):
|
112 |
-
update_value = tf.placeholder(_dtype)
|
113 |
-
update_op = _create_var(name, update_value)
|
114 |
-
_immediate[name] = update_op, update_value
|
115 |
-
update_op, update_value = _immediate[name]
|
116 |
-
tfutil.run(update_op, {update_value: value})
|
117 |
-
return value if passthru is None else passthru
|
118 |
-
|
119 |
-
|
120 |
-
def finalize_autosummaries() -> None:
|
121 |
-
"""Create the necessary ops to include autosummaries in TensorBoard report.
|
122 |
-
Note: This should be done only once per graph.
|
123 |
-
"""
|
124 |
-
global _finalized
|
125 |
-
tfutil.assert_tf_initialized()
|
126 |
-
|
127 |
-
if _finalized:
|
128 |
-
return None
|
129 |
-
|
130 |
-
_finalized = True
|
131 |
-
tfutil.init_uninitialized_vars([var for vars_list in _vars.values() for var in vars_list])
|
132 |
-
|
133 |
-
# Create summary ops.
|
134 |
-
with tf.device(None), tf.control_dependencies(None):
|
135 |
-
for name, vars_list in _vars.items():
|
136 |
-
name_id = name.replace("/", "_")
|
137 |
-
with tfutil.absolute_name_scope("Autosummary/" + name_id):
|
138 |
-
moments = tf.add_n(vars_list)
|
139 |
-
moments /= moments[0]
|
140 |
-
with tf.control_dependencies([moments]): # read before resetting
|
141 |
-
reset_ops = [tf.assign(var, tf.zeros(3, dtype=_dtype)) for var in vars_list]
|
142 |
-
with tf.name_scope(None), tf.control_dependencies(reset_ops): # reset before reporting
|
143 |
-
mean = moments[1]
|
144 |
-
std = tf.sqrt(moments[2] - tf.square(moments[1]))
|
145 |
-
tf.summary.scalar(name, mean)
|
146 |
-
if enable_custom_scalars:
|
147 |
-
tf.summary.scalar("xCustomScalars/" + name + "/margin_lo", mean - std)
|
148 |
-
tf.summary.scalar("xCustomScalars/" + name + "/margin_hi", mean + std)
|
149 |
-
|
150 |
-
# Setup layout for custom scalars.
|
151 |
-
layout = None
|
152 |
-
if enable_custom_scalars:
|
153 |
-
cat_dict = OrderedDict()
|
154 |
-
for series_name in sorted(_vars.keys()):
|
155 |
-
p = series_name.split("/")
|
156 |
-
cat = p[0] if len(p) >= 2 else ""
|
157 |
-
chart = "/".join(p[1:-1]) if len(p) >= 3 else p[-1]
|
158 |
-
if cat not in cat_dict:
|
159 |
-
cat_dict[cat] = OrderedDict()
|
160 |
-
if chart not in cat_dict[cat]:
|
161 |
-
cat_dict[cat][chart] = []
|
162 |
-
cat_dict[cat][chart].append(series_name)
|
163 |
-
categories = []
|
164 |
-
for cat_name, chart_dict in cat_dict.items():
|
165 |
-
charts = []
|
166 |
-
for chart_name, series_names in chart_dict.items():
|
167 |
-
series = []
|
168 |
-
for series_name in series_names:
|
169 |
-
series.append(layout_pb2.MarginChartContent.Series(
|
170 |
-
value=series_name,
|
171 |
-
lower="xCustomScalars/" + series_name + "/margin_lo",
|
172 |
-
upper="xCustomScalars/" + series_name + "/margin_hi"))
|
173 |
-
margin = layout_pb2.MarginChartContent(series=series)
|
174 |
-
charts.append(layout_pb2.Chart(title=chart_name, margin=margin))
|
175 |
-
categories.append(layout_pb2.Category(title=cat_name, chart=charts))
|
176 |
-
layout = summary_lib.custom_scalar_pb(layout_pb2.Layout(category=categories))
|
177 |
-
return layout
|
178 |
-
|
179 |
-
def save_summaries(file_writer, global_step=None):
|
180 |
-
"""Call FileWriter.add_summary() with all summaries in the default graph,
|
181 |
-
automatically finalizing and merging them on the first call.
|
182 |
-
"""
|
183 |
-
global _merge_op
|
184 |
-
tfutil.assert_tf_initialized()
|
185 |
-
|
186 |
-
if _merge_op is None:
|
187 |
-
layout = finalize_autosummaries()
|
188 |
-
if layout is not None:
|
189 |
-
file_writer.add_summary(layout)
|
190 |
-
with tf.device(None), tf.control_dependencies(None):
|
191 |
-
_merge_op = tf.summary.merge_all()
|
192 |
-
|
193 |
-
file_writer.add_summary(_merge_op.eval(), global_step)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
dnnlib/tflib/custom_ops.py
DELETED
@@ -1,171 +0,0 @@
|
|
1 |
-
# Copyright (c) SenseTime Research. All rights reserved.
|
2 |
-
|
3 |
-
# Copyright (c) 2019, NVIDIA Corporation. All rights reserved.
|
4 |
-
#
|
5 |
-
# This work is made available under the Nvidia Source Code License-NC.
|
6 |
-
# To view a copy of this license, visit
|
7 |
-
# https://nvlabs.github.io/stylegan2/license.html
|
8 |
-
|
9 |
-
"""TensorFlow custom ops builder.
|
10 |
-
"""
|
11 |
-
|
12 |
-
import os
|
13 |
-
import re
|
14 |
-
import uuid
|
15 |
-
import hashlib
|
16 |
-
import tempfile
|
17 |
-
import shutil
|
18 |
-
import tensorflow as tf
|
19 |
-
from tensorflow.python.client import device_lib # pylint: disable=no-name-in-module
|
20 |
-
|
21 |
-
#----------------------------------------------------------------------------
|
22 |
-
# Global options.
|
23 |
-
|
24 |
-
cuda_cache_path = os.path.join(os.path.dirname(__file__), '_cudacache')
|
25 |
-
cuda_cache_version_tag = 'v1'
|
26 |
-
do_not_hash_included_headers = False # Speed up compilation by assuming that headers included by the CUDA code never change. Unsafe!
|
27 |
-
verbose = True # Print status messages to stdout.
|
28 |
-
|
29 |
-
compiler_bindir_search_path = [
|
30 |
-
'C:/Program Files (x86)/Microsoft Visual Studio/2017/Community/VC/Tools/MSVC/14.14.26428/bin/Hostx64/x64',
|
31 |
-
'C:/Program Files (x86)/Microsoft Visual Studio/2019/Community/VC/Tools/MSVC/14.23.28105/bin/Hostx64/x64',
|
32 |
-
'C:/Program Files (x86)/Microsoft Visual Studio 14.0/vc/bin',
|
33 |
-
]
|
34 |
-
|
35 |
-
#----------------------------------------------------------------------------
|
36 |
-
# Internal helper funcs.
|
37 |
-
|
38 |
-
def _find_compiler_bindir():
|
39 |
-
for compiler_path in compiler_bindir_search_path:
|
40 |
-
if os.path.isdir(compiler_path):
|
41 |
-
return compiler_path
|
42 |
-
return None
|
43 |
-
|
44 |
-
def _get_compute_cap(device):
|
45 |
-
caps_str = device.physical_device_desc
|
46 |
-
m = re.search('compute capability: (\\d+).(\\d+)', caps_str)
|
47 |
-
major = m.group(1)
|
48 |
-
minor = m.group(2)
|
49 |
-
return (major, minor)
|
50 |
-
|
51 |
-
def _get_cuda_gpu_arch_string():
|
52 |
-
gpus = [x for x in device_lib.list_local_devices() if x.device_type == 'GPU']
|
53 |
-
if len(gpus) == 0:
|
54 |
-
raise RuntimeError('No GPU devices found')
|
55 |
-
(major, minor) = _get_compute_cap(gpus[0])
|
56 |
-
return 'sm_%s%s' % (major, minor)
|
57 |
-
|
58 |
-
def _run_cmd(cmd):
|
59 |
-
with os.popen(cmd) as pipe:
|
60 |
-
output = pipe.read()
|
61 |
-
status = pipe.close()
|
62 |
-
if status is not None:
|
63 |
-
raise RuntimeError('NVCC returned an error. See below for full command line and output log:\n\n%s\n\n%s' % (cmd, output))
|
64 |
-
|
65 |
-
def _prepare_nvcc_cli(opts):
|
66 |
-
cmd = 'nvcc ' + opts.strip()
|
67 |
-
cmd += ' --disable-warnings'
|
68 |
-
cmd += ' --include-path "%s"' % tf.sysconfig.get_include()
|
69 |
-
cmd += ' --include-path "%s"' % os.path.join(tf.sysconfig.get_include(), 'external', 'protobuf_archive', 'src')
|
70 |
-
cmd += ' --include-path "%s"' % os.path.join(tf.sysconfig.get_include(), 'external', 'com_google_absl')
|
71 |
-
cmd += ' --include-path "%s"' % os.path.join(tf.sysconfig.get_include(), 'external', 'eigen_archive')
|
72 |
-
|
73 |
-
compiler_bindir = _find_compiler_bindir()
|
74 |
-
if compiler_bindir is None:
|
75 |
-
# Require that _find_compiler_bindir succeeds on Windows. Allow
|
76 |
-
# nvcc to use whatever is the default on Linux.
|
77 |
-
if os.name == 'nt':
|
78 |
-
raise RuntimeError('Could not find MSVC/GCC/CLANG installation on this computer. Check compiler_bindir_search_path list in "%s".' % __file__)
|
79 |
-
else:
|
80 |
-
cmd += ' --compiler-bindir "%s"' % compiler_bindir
|
81 |
-
cmd += ' 2>&1'
|
82 |
-
return cmd
|
83 |
-
|
84 |
-
#----------------------------------------------------------------------------
|
85 |
-
# Main entry point.
|
86 |
-
|
87 |
-
_plugin_cache = dict()
|
88 |
-
|
89 |
-
def get_plugin(cuda_file):
|
90 |
-
cuda_file_base = os.path.basename(cuda_file)
|
91 |
-
cuda_file_name, cuda_file_ext = os.path.splitext(cuda_file_base)
|
92 |
-
|
93 |
-
# Already in cache?
|
94 |
-
if cuda_file in _plugin_cache:
|
95 |
-
return _plugin_cache[cuda_file]
|
96 |
-
|
97 |
-
# Setup plugin.
|
98 |
-
if verbose:
|
99 |
-
print('Setting up TensorFlow plugin "%s": ' % cuda_file_base, end='', flush=True)
|
100 |
-
try:
|
101 |
-
# Hash CUDA source.
|
102 |
-
md5 = hashlib.md5()
|
103 |
-
with open(cuda_file, 'rb') as f:
|
104 |
-
md5.update(f.read())
|
105 |
-
md5.update(b'\n')
|
106 |
-
|
107 |
-
# Hash headers included by the CUDA code by running it through the preprocessor.
|
108 |
-
if not do_not_hash_included_headers:
|
109 |
-
if verbose:
|
110 |
-
print('Preprocessing... ', end='', flush=True)
|
111 |
-
with tempfile.TemporaryDirectory() as tmp_dir:
|
112 |
-
tmp_file = os.path.join(tmp_dir, cuda_file_name + '_tmp' + cuda_file_ext)
|
113 |
-
_run_cmd(_prepare_nvcc_cli('"%s" --preprocess -o "%s" --keep --keep-dir "%s"' % (cuda_file, tmp_file, tmp_dir)))
|
114 |
-
with open(tmp_file, 'rb') as f:
|
115 |
-
bad_file_str = ('"' + cuda_file.replace('\\', '/') + '"').encode('utf-8') # __FILE__ in error check macros
|
116 |
-
good_file_str = ('"' + cuda_file_base + '"').encode('utf-8')
|
117 |
-
for ln in f:
|
118 |
-
if not ln.startswith(b'# ') and not ln.startswith(b'#line '): # ignore line number pragmas
|
119 |
-
ln = ln.replace(bad_file_str, good_file_str)
|
120 |
-
md5.update(ln)
|
121 |
-
md5.update(b'\n')
|
122 |
-
|
123 |
-
# Select compiler options.
|
124 |
-
compile_opts = ''
|
125 |
-
if os.name == 'nt':
|
126 |
-
compile_opts += '"%s"' % os.path.join(tf.sysconfig.get_lib(), 'python', '_pywrap_tensorflow_internal.lib')
|
127 |
-
elif os.name == 'posix':
|
128 |
-
compile_opts += '"%s"' % os.path.join(tf.sysconfig.get_lib(), 'python', '_pywrap_tensorflow_internal.so')
|
129 |
-
compile_opts += ' --compiler-options \'-fPIC -D_GLIBCXX_USE_CXX11_ABI=0\''
|
130 |
-
else:
|
131 |
-
assert False # not Windows or Linux, w00t?
|
132 |
-
compile_opts += ' --gpu-architecture=%s' % _get_cuda_gpu_arch_string()
|
133 |
-
compile_opts += ' --use_fast_math'
|
134 |
-
nvcc_cmd = _prepare_nvcc_cli(compile_opts)
|
135 |
-
|
136 |
-
# Hash build configuration.
|
137 |
-
md5.update(('nvcc_cmd: ' + nvcc_cmd).encode('utf-8') + b'\n')
|
138 |
-
md5.update(('tf.VERSION: ' + tf.VERSION).encode('utf-8') + b'\n')
|
139 |
-
md5.update(('cuda_cache_version_tag: ' + cuda_cache_version_tag).encode('utf-8') + b'\n')
|
140 |
-
|
141 |
-
# Compile if not already compiled.
|
142 |
-
bin_file_ext = '.dll' if os.name == 'nt' else '.so'
|
143 |
-
bin_file = os.path.join(cuda_cache_path, cuda_file_name + '_' + md5.hexdigest() + bin_file_ext)
|
144 |
-
if not os.path.isfile(bin_file):
|
145 |
-
if verbose:
|
146 |
-
print('Compiling... ', end='', flush=True)
|
147 |
-
with tempfile.TemporaryDirectory() as tmp_dir:
|
148 |
-
tmp_file = os.path.join(tmp_dir, cuda_file_name + '_tmp' + bin_file_ext)
|
149 |
-
_run_cmd(nvcc_cmd + ' "%s" --shared -o "%s" --keep --keep-dir "%s"' % (cuda_file, tmp_file, tmp_dir))
|
150 |
-
os.makedirs(cuda_cache_path, exist_ok=True)
|
151 |
-
intermediate_file = os.path.join(cuda_cache_path, cuda_file_name + '_' + uuid.uuid4().hex + '_tmp' + bin_file_ext)
|
152 |
-
shutil.copyfile(tmp_file, intermediate_file)
|
153 |
-
os.rename(intermediate_file, bin_file) # atomic
|
154 |
-
|
155 |
-
# Load.
|
156 |
-
if verbose:
|
157 |
-
print('Loading... ', end='', flush=True)
|
158 |
-
plugin = tf.load_op_library(bin_file)
|
159 |
-
|
160 |
-
# Add to cache.
|
161 |
-
_plugin_cache[cuda_file] = plugin
|
162 |
-
if verbose:
|
163 |
-
print('Done.', flush=True)
|
164 |
-
return plugin
|
165 |
-
|
166 |
-
except:
|
167 |
-
if verbose:
|
168 |
-
print('Failed!', flush=True)
|
169 |
-
raise
|
170 |
-
|
171 |
-
#----------------------------------------------------------------------------
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
dnnlib/tflib/network.py
DELETED
@@ -1,592 +0,0 @@
|
|
1 |
-
# Copyright (c) SenseTime Research. All rights reserved.
|
2 |
-
|
3 |
-
# Copyright (c) 2019, NVIDIA Corporation. All rights reserved.
|
4 |
-
#
|
5 |
-
# This work is made available under the Nvidia Source Code License-NC.
|
6 |
-
# To view a copy of this license, visit
|
7 |
-
# https://nvlabs.github.io/stylegan2/license.html
|
8 |
-
|
9 |
-
"""Helper for managing networks."""
|
10 |
-
|
11 |
-
import types
|
12 |
-
import inspect
|
13 |
-
import re
|
14 |
-
import uuid
|
15 |
-
import sys
|
16 |
-
import numpy as np
|
17 |
-
import tensorflow as tf
|
18 |
-
|
19 |
-
from collections import OrderedDict
|
20 |
-
from typing import Any, List, Tuple, Union
|
21 |
-
|
22 |
-
from . import tfutil
|
23 |
-
from .. import util
|
24 |
-
|
25 |
-
from .tfutil import TfExpression, TfExpressionEx
|
26 |
-
|
27 |
-
_import_handlers = [] # Custom import handlers for dealing with legacy data in pickle import.
|
28 |
-
_import_module_src = dict() # Source code for temporary modules created during pickle import.
|
29 |
-
|
30 |
-
|
31 |
-
def import_handler(handler_func):
|
32 |
-
"""Function decorator for declaring custom import handlers."""
|
33 |
-
_import_handlers.append(handler_func)
|
34 |
-
return handler_func
|
35 |
-
|
36 |
-
|
37 |
-
class Network:
|
38 |
-
"""Generic network abstraction.
|
39 |
-
|
40 |
-
Acts as a convenience wrapper for a parameterized network construction
|
41 |
-
function, providing several utility methods and convenient access to
|
42 |
-
the inputs/outputs/weights.
|
43 |
-
|
44 |
-
Network objects can be safely pickled and unpickled for long-term
|
45 |
-
archival purposes. The pickling works reliably as long as the underlying
|
46 |
-
network construction function is defined in a standalone Python module
|
47 |
-
that has no side effects or application-specific imports.
|
48 |
-
|
49 |
-
Args:
|
50 |
-
name: Network name. Used to select TensorFlow name and variable scopes.
|
51 |
-
func_name: Fully qualified name of the underlying network construction function, or a top-level function object.
|
52 |
-
static_kwargs: Keyword arguments to be passed in to the network construction function.
|
53 |
-
|
54 |
-
Attributes:
|
55 |
-
name: User-specified name, defaults to build func name if None.
|
56 |
-
scope: Unique TensorFlow scope containing template graph and variables, derived from the user-specified name.
|
57 |
-
static_kwargs: Arguments passed to the user-supplied build func.
|
58 |
-
components: Container for sub-networks. Passed to the build func, and retained between calls.
|
59 |
-
num_inputs: Number of input tensors.
|
60 |
-
num_outputs: Number of output tensors.
|
61 |
-
input_shapes: Input tensor shapes (NC or NCHW), including minibatch dimension.
|
62 |
-
output_shapes: Output tensor shapes (NC or NCHW), including minibatch dimension.
|
63 |
-
input_shape: Short-hand for input_shapes[0].
|
64 |
-
output_shape: Short-hand for output_shapes[0].
|
65 |
-
input_templates: Input placeholders in the template graph.
|
66 |
-
output_templates: Output tensors in the template graph.
|
67 |
-
input_names: Name string for each input.
|
68 |
-
output_names: Name string for each output.
|
69 |
-
own_vars: Variables defined by this network (local_name => var), excluding sub-networks.
|
70 |
-
vars: All variables (local_name => var).
|
71 |
-
trainables: All trainable variables (local_name => var).
|
72 |
-
var_global_to_local: Mapping from variable global names to local names.
|
73 |
-
"""
|
74 |
-
|
75 |
-
def __init__(self, name: str = None, func_name: Any = None, **static_kwargs):
|
76 |
-
tfutil.assert_tf_initialized()
|
77 |
-
assert isinstance(name, str) or name is None
|
78 |
-
assert func_name is not None
|
79 |
-
assert isinstance(func_name, str) or util.is_top_level_function(func_name)
|
80 |
-
assert util.is_pickleable(static_kwargs)
|
81 |
-
|
82 |
-
self._init_fields()
|
83 |
-
self.name = name
|
84 |
-
self.static_kwargs = util.EasyDict(static_kwargs)
|
85 |
-
|
86 |
-
# Locate the user-specified network build function.
|
87 |
-
if util.is_top_level_function(func_name):
|
88 |
-
func_name = util.get_top_level_function_name(func_name)
|
89 |
-
module, self._build_func_name = util.get_module_from_obj_name(func_name)
|
90 |
-
self._build_func = util.get_obj_from_module(module, self._build_func_name)
|
91 |
-
assert callable(self._build_func)
|
92 |
-
|
93 |
-
# Dig up source code for the module containing the build function.
|
94 |
-
self._build_module_src = _import_module_src.get(module, None)
|
95 |
-
if self._build_module_src is None:
|
96 |
-
self._build_module_src = inspect.getsource(module)
|
97 |
-
|
98 |
-
# Init TensorFlow graph.
|
99 |
-
self._init_graph()
|
100 |
-
self.reset_own_vars()
|
101 |
-
|
102 |
-
def _init_fields(self) -> None:
|
103 |
-
self.name = None
|
104 |
-
self.scope = None
|
105 |
-
self.static_kwargs = util.EasyDict()
|
106 |
-
self.components = util.EasyDict()
|
107 |
-
self.num_inputs = 0
|
108 |
-
self.num_outputs = 0
|
109 |
-
self.input_shapes = [[]]
|
110 |
-
self.output_shapes = [[]]
|
111 |
-
self.input_shape = []
|
112 |
-
self.output_shape = []
|
113 |
-
self.input_templates = []
|
114 |
-
self.output_templates = []
|
115 |
-
self.input_names = []
|
116 |
-
self.output_names = []
|
117 |
-
self.own_vars = OrderedDict()
|
118 |
-
self.vars = OrderedDict()
|
119 |
-
self.trainables = OrderedDict()
|
120 |
-
self.var_global_to_local = OrderedDict()
|
121 |
-
|
122 |
-
self._build_func = None # User-supplied build function that constructs the network.
|
123 |
-
self._build_func_name = None # Name of the build function.
|
124 |
-
self._build_module_src = None # Full source code of the module containing the build function.
|
125 |
-
self._run_cache = dict() # Cached graph data for Network.run().
|
126 |
-
|
127 |
-
def _init_graph(self) -> None:
|
128 |
-
# Collect inputs.
|
129 |
-
self.input_names = []
|
130 |
-
|
131 |
-
for param in inspect.signature(self._build_func).parameters.values():
|
132 |
-
if param.kind == param.POSITIONAL_OR_KEYWORD and param.default is param.empty:
|
133 |
-
self.input_names.append(param.name)
|
134 |
-
|
135 |
-
self.num_inputs = len(self.input_names)
|
136 |
-
assert self.num_inputs >= 1
|
137 |
-
|
138 |
-
# Choose name and scope.
|
139 |
-
if self.name is None:
|
140 |
-
self.name = self._build_func_name
|
141 |
-
assert re.match("^[A-Za-z0-9_.\\-]*$", self.name)
|
142 |
-
with tf.name_scope(None):
|
143 |
-
self.scope = tf.get_default_graph().unique_name(self.name, mark_as_used=True)
|
144 |
-
|
145 |
-
# Finalize build func kwargs.
|
146 |
-
build_kwargs = dict(self.static_kwargs)
|
147 |
-
build_kwargs["is_template_graph"] = True
|
148 |
-
build_kwargs["components"] = self.components
|
149 |
-
|
150 |
-
# Build template graph.
|
151 |
-
with tfutil.absolute_variable_scope(self.scope, reuse=False), tfutil.absolute_name_scope(self.scope): # ignore surrounding scopes
|
152 |
-
assert tf.get_variable_scope().name == self.scope
|
153 |
-
assert tf.get_default_graph().get_name_scope() == self.scope
|
154 |
-
with tf.control_dependencies(None): # ignore surrounding control dependencies
|
155 |
-
self.input_templates = [tf.placeholder(tf.float32, name=name) for name in self.input_names]
|
156 |
-
out_expr = self._build_func(*self.input_templates, **build_kwargs)
|
157 |
-
|
158 |
-
# Collect outputs.
|
159 |
-
assert tfutil.is_tf_expression(out_expr) or isinstance(out_expr, tuple)
|
160 |
-
self.output_templates = [out_expr] if tfutil.is_tf_expression(out_expr) else list(out_expr)
|
161 |
-
self.num_outputs = len(self.output_templates)
|
162 |
-
assert self.num_outputs >= 1
|
163 |
-
assert all(tfutil.is_tf_expression(t) for t in self.output_templates)
|
164 |
-
|
165 |
-
# Perform sanity checks.
|
166 |
-
if any(t.shape.ndims is None for t in self.input_templates):
|
167 |
-
raise ValueError("Network input shapes not defined. Please call x.set_shape() for each input.")
|
168 |
-
if any(t.shape.ndims is None for t in self.output_templates):
|
169 |
-
raise ValueError("Network output shapes not defined. Please call x.set_shape() where applicable.")
|
170 |
-
if any(not isinstance(comp, Network) for comp in self.components.values()):
|
171 |
-
raise ValueError("Components of a Network must be Networks themselves.")
|
172 |
-
if len(self.components) != len(set(comp.name for comp in self.components.values())):
|
173 |
-
raise ValueError("Components of a Network must have unique names.")
|
174 |
-
|
175 |
-
# List inputs and outputs.
|
176 |
-
self.input_shapes = [t.shape.as_list() for t in self.input_templates]
|
177 |
-
self.output_shapes = [t.shape.as_list() for t in self.output_templates]
|
178 |
-
self.input_shape = self.input_shapes[0]
|
179 |
-
self.output_shape = self.output_shapes[0]
|
180 |
-
self.output_names = [t.name.split("/")[-1].split(":")[0] for t in self.output_templates]
|
181 |
-
|
182 |
-
# List variables.
|
183 |
-
self.own_vars = OrderedDict((var.name[len(self.scope) + 1:].split(":")[0], var) for var in tf.global_variables(self.scope + "/"))
|
184 |
-
self.vars = OrderedDict(self.own_vars)
|
185 |
-
self.vars.update((comp.name + "/" + name, var) for comp in self.components.values() for name, var in comp.vars.items())
|
186 |
-
self.trainables = OrderedDict((name, var) for name, var in self.vars.items() if var.trainable)
|
187 |
-
self.var_global_to_local = OrderedDict((var.name.split(":")[0], name) for name, var in self.vars.items())
|
188 |
-
|
189 |
-
def reset_own_vars(self) -> None:
|
190 |
-
"""Re-initialize all variables of this network, excluding sub-networks."""
|
191 |
-
tfutil.run([var.initializer for var in self.own_vars.values()])
|
192 |
-
|
193 |
-
def reset_vars(self) -> None:
|
194 |
-
"""Re-initialize all variables of this network, including sub-networks."""
|
195 |
-
tfutil.run([var.initializer for var in self.vars.values()])
|
196 |
-
|
197 |
-
def reset_trainables(self) -> None:
|
198 |
-
"""Re-initialize all trainable variables of this network, including sub-networks."""
|
199 |
-
tfutil.run([var.initializer for var in self.trainables.values()])
|
200 |
-
|
201 |
-
def get_output_for(self, *in_expr: TfExpression, return_as_list: bool = False, **dynamic_kwargs) -> Union[TfExpression, List[TfExpression]]:
|
202 |
-
"""Construct TensorFlow expression(s) for the output(s) of this network, given the input expression(s)."""
|
203 |
-
assert len(in_expr) == self.num_inputs
|
204 |
-
assert not all(expr is None for expr in in_expr)
|
205 |
-
|
206 |
-
# Finalize build func kwargs.
|
207 |
-
build_kwargs = dict(self.static_kwargs)
|
208 |
-
build_kwargs.update(dynamic_kwargs)
|
209 |
-
build_kwargs["is_template_graph"] = False
|
210 |
-
build_kwargs["components"] = self.components
|
211 |
-
|
212 |
-
# Build TensorFlow graph to evaluate the network.
|
213 |
-
with tfutil.absolute_variable_scope(self.scope, reuse=True), tf.name_scope(self.name):
|
214 |
-
assert tf.get_variable_scope().name == self.scope
|
215 |
-
valid_inputs = [expr for expr in in_expr if expr is not None]
|
216 |
-
final_inputs = []
|
217 |
-
for expr, name, shape in zip(in_expr, self.input_names, self.input_shapes):
|
218 |
-
if expr is not None:
|
219 |
-
expr = tf.identity(expr, name=name)
|
220 |
-
else:
|
221 |
-
expr = tf.zeros([tf.shape(valid_inputs[0])[0]] + shape[1:], name=name)
|
222 |
-
final_inputs.append(expr)
|
223 |
-
out_expr = self._build_func(*final_inputs, **build_kwargs)
|
224 |
-
|
225 |
-
# Propagate input shapes back to the user-specified expressions.
|
226 |
-
for expr, final in zip(in_expr, final_inputs):
|
227 |
-
if isinstance(expr, tf.Tensor):
|
228 |
-
expr.set_shape(final.shape)
|
229 |
-
|
230 |
-
# Express outputs in the desired format.
|
231 |
-
assert tfutil.is_tf_expression(out_expr) or isinstance(out_expr, tuple)
|
232 |
-
if return_as_list:
|
233 |
-
out_expr = [out_expr] if tfutil.is_tf_expression(out_expr) else list(out_expr)
|
234 |
-
return out_expr
|
235 |
-
|
236 |
-
def get_var_local_name(self, var_or_global_name: Union[TfExpression, str]) -> str:
|
237 |
-
"""Get the local name of a given variable, without any surrounding name scopes."""
|
238 |
-
assert tfutil.is_tf_expression(var_or_global_name) or isinstance(var_or_global_name, str)
|
239 |
-
global_name = var_or_global_name if isinstance(var_or_global_name, str) else var_or_global_name.name
|
240 |
-
return self.var_global_to_local[global_name]
|
241 |
-
|
242 |
-
def find_var(self, var_or_local_name: Union[TfExpression, str]) -> TfExpression:
|
243 |
-
"""Find variable by local or global name."""
|
244 |
-
assert tfutil.is_tf_expression(var_or_local_name) or isinstance(var_or_local_name, str)
|
245 |
-
return self.vars[var_or_local_name] if isinstance(var_or_local_name, str) else var_or_local_name
|
246 |
-
|
247 |
-
def get_var(self, var_or_local_name: Union[TfExpression, str]) -> np.ndarray:
|
248 |
-
"""Get the value of a given variable as NumPy array.
|
249 |
-
Note: This method is very inefficient -- prefer to use tflib.run(list_of_vars) whenever possible."""
|
250 |
-
return self.find_var(var_or_local_name).eval()
|
251 |
-
|
252 |
-
def set_var(self, var_or_local_name: Union[TfExpression, str], new_value: Union[int, float, np.ndarray]) -> None:
|
253 |
-
"""Set the value of a given variable based on the given NumPy array.
|
254 |
-
Note: This method is very inefficient -- prefer to use tflib.set_vars() whenever possible."""
|
255 |
-
tfutil.set_vars({self.find_var(var_or_local_name): new_value})
|
256 |
-
|
257 |
-
def __getstate__(self) -> dict:
|
258 |
-
"""Pickle export."""
|
259 |
-
state = dict()
|
260 |
-
state["version"] = 4
|
261 |
-
state["name"] = self.name
|
262 |
-
state["static_kwargs"] = dict(self.static_kwargs)
|
263 |
-
state["components"] = dict(self.components)
|
264 |
-
state["build_module_src"] = self._build_module_src
|
265 |
-
state["build_func_name"] = self._build_func_name
|
266 |
-
state["variables"] = list(zip(self.own_vars.keys(), tfutil.run(list(self.own_vars.values()))))
|
267 |
-
return state
|
268 |
-
|
269 |
-
def __setstate__(self, state: dict) -> None:
|
270 |
-
"""Pickle import."""
|
271 |
-
# pylint: disable=attribute-defined-outside-init
|
272 |
-
tfutil.assert_tf_initialized()
|
273 |
-
self._init_fields()
|
274 |
-
|
275 |
-
# Execute custom import handlers.
|
276 |
-
for handler in _import_handlers:
|
277 |
-
state = handler(state)
|
278 |
-
|
279 |
-
# Set basic fields.
|
280 |
-
assert state["version"] in [2, 3, 4]
|
281 |
-
self.name = state["name"]
|
282 |
-
self.static_kwargs = util.EasyDict(state["static_kwargs"])
|
283 |
-
self.components = util.EasyDict(state.get("components", {}))
|
284 |
-
self._build_module_src = state["build_module_src"]
|
285 |
-
self._build_func_name = state["build_func_name"]
|
286 |
-
|
287 |
-
# Create temporary module from the imported source code.
|
288 |
-
module_name = "_tflib_network_import_" + uuid.uuid4().hex
|
289 |
-
module = types.ModuleType(module_name)
|
290 |
-
sys.modules[module_name] = module
|
291 |
-
_import_module_src[module] = self._build_module_src
|
292 |
-
exec(self._build_module_src, module.__dict__) # pylint: disable=exec-used
|
293 |
-
|
294 |
-
# Locate network build function in the temporary module.
|
295 |
-
self._build_func = util.get_obj_from_module(module, self._build_func_name)
|
296 |
-
assert callable(self._build_func)
|
297 |
-
|
298 |
-
# Init TensorFlow graph.
|
299 |
-
self._init_graph()
|
300 |
-
self.reset_own_vars()
|
301 |
-
tfutil.set_vars({self.find_var(name): value for name, value in state["variables"]})
|
302 |
-
|
303 |
-
def clone(self, name: str = None, **new_static_kwargs) -> "Network":
|
304 |
-
"""Create a clone of this network with its own copy of the variables."""
|
305 |
-
# pylint: disable=protected-access
|
306 |
-
net = object.__new__(Network)
|
307 |
-
net._init_fields()
|
308 |
-
net.name = name if name is not None else self.name
|
309 |
-
net.static_kwargs = util.EasyDict(self.static_kwargs)
|
310 |
-
net.static_kwargs.update(new_static_kwargs)
|
311 |
-
net._build_module_src = self._build_module_src
|
312 |
-
net._build_func_name = self._build_func_name
|
313 |
-
net._build_func = self._build_func
|
314 |
-
net._init_graph()
|
315 |
-
net.copy_vars_from(self)
|
316 |
-
return net
|
317 |
-
|
318 |
-
def copy_own_vars_from(self, src_net: "Network") -> None:
|
319 |
-
"""Copy the values of all variables from the given network, excluding sub-networks."""
|
320 |
-
names = [name for name in self.own_vars.keys() if name in src_net.own_vars]
|
321 |
-
tfutil.set_vars(tfutil.run({self.vars[name]: src_net.vars[name] for name in names}))
|
322 |
-
|
323 |
-
def copy_vars_from(self, src_net: "Network") -> None:
|
324 |
-
"""Copy the values of all variables from the given network, including sub-networks."""
|
325 |
-
names = [name for name in self.vars.keys() if name in src_net.vars]
|
326 |
-
tfutil.set_vars(tfutil.run({self.vars[name]: src_net.vars[name] for name in names}))
|
327 |
-
|
328 |
-
def copy_trainables_from(self, src_net: "Network") -> None:
|
329 |
-
"""Copy the values of all trainable variables from the given network, including sub-networks."""
|
330 |
-
names = [name for name in self.trainables.keys() if name in src_net.trainables]
|
331 |
-
tfutil.set_vars(tfutil.run({self.vars[name]: src_net.vars[name] for name in names}))
|
332 |
-
|
333 |
-
def convert(self, new_func_name: str, new_name: str = None, **new_static_kwargs) -> "Network":
|
334 |
-
"""Create new network with the given parameters, and copy all variables from this network."""
|
335 |
-
if new_name is None:
|
336 |
-
new_name = self.name
|
337 |
-
static_kwargs = dict(self.static_kwargs)
|
338 |
-
static_kwargs.update(new_static_kwargs)
|
339 |
-
net = Network(name=new_name, func_name=new_func_name, **static_kwargs)
|
340 |
-
net.copy_vars_from(self)
|
341 |
-
return net
|
342 |
-
|
343 |
-
def setup_as_moving_average_of(self, src_net: "Network", beta: TfExpressionEx = 0.99, beta_nontrainable: TfExpressionEx = 0.0) -> tf.Operation:
|
344 |
-
"""Construct a TensorFlow op that updates the variables of this network
|
345 |
-
to be slightly closer to those of the given network."""
|
346 |
-
with tfutil.absolute_name_scope(self.scope + "/_MovingAvg"):
|
347 |
-
ops = []
|
348 |
-
for name, var in self.vars.items():
|
349 |
-
if name in src_net.vars:
|
350 |
-
cur_beta = beta if name in self.trainables else beta_nontrainable
|
351 |
-
new_value = tfutil.lerp(src_net.vars[name], var, cur_beta)
|
352 |
-
ops.append(var.assign(new_value))
|
353 |
-
return tf.group(*ops)
|
354 |
-
|
355 |
-
def run(self,
|
356 |
-
*in_arrays: Tuple[Union[np.ndarray, None], ...],
|
357 |
-
input_transform: dict = None,
|
358 |
-
output_transform: dict = None,
|
359 |
-
return_as_list: bool = False,
|
360 |
-
print_progress: bool = False,
|
361 |
-
minibatch_size: int = None,
|
362 |
-
num_gpus: int = 1,
|
363 |
-
assume_frozen: bool = False,
|
364 |
-
**dynamic_kwargs) -> Union[np.ndarray, Tuple[np.ndarray, ...], List[np.ndarray]]:
|
365 |
-
"""Run this network for the given NumPy array(s), and return the output(s) as NumPy array(s).
|
366 |
-
|
367 |
-
Args:
|
368 |
-
input_transform: A dict specifying a custom transformation to be applied to the input tensor(s) before evaluating the network.
|
369 |
-
The dict must contain a 'func' field that points to a top-level function. The function is called with the input
|
370 |
-
TensorFlow expression(s) as positional arguments. Any remaining fields of the dict will be passed in as kwargs.
|
371 |
-
output_transform: A dict specifying a custom transformation to be applied to the output tensor(s) after evaluating the network.
|
372 |
-
The dict must contain a 'func' field that points to a top-level function. The function is called with the output
|
373 |
-
TensorFlow expression(s) as positional arguments. Any remaining fields of the dict will be passed in as kwargs.
|
374 |
-
return_as_list: True = return a list of NumPy arrays, False = return a single NumPy array, or a tuple if there are multiple outputs.
|
375 |
-
print_progress: Print progress to the console? Useful for very large input arrays.
|
376 |
-
minibatch_size: Maximum minibatch size to use, None = disable batching.
|
377 |
-
num_gpus: Number of GPUs to use.
|
378 |
-
assume_frozen: Improve multi-GPU performance by assuming that the trainable parameters will remain changed between calls.
|
379 |
-
dynamic_kwargs: Additional keyword arguments to be passed into the network build function.
|
380 |
-
"""
|
381 |
-
assert len(in_arrays) == self.num_inputs
|
382 |
-
assert not all(arr is None for arr in in_arrays)
|
383 |
-
assert input_transform is None or util.is_top_level_function(input_transform["func"])
|
384 |
-
assert output_transform is None or util.is_top_level_function(output_transform["func"])
|
385 |
-
output_transform, dynamic_kwargs = _handle_legacy_output_transforms(output_transform, dynamic_kwargs)
|
386 |
-
num_items = in_arrays[0].shape[0]
|
387 |
-
if minibatch_size is None:
|
388 |
-
minibatch_size = num_items
|
389 |
-
|
390 |
-
# Construct unique hash key from all arguments that affect the TensorFlow graph.
|
391 |
-
key = dict(input_transform=input_transform, output_transform=output_transform, num_gpus=num_gpus, assume_frozen=assume_frozen, dynamic_kwargs=dynamic_kwargs)
|
392 |
-
def unwind_key(obj):
|
393 |
-
if isinstance(obj, dict):
|
394 |
-
return [(key, unwind_key(value)) for key, value in sorted(obj.items())]
|
395 |
-
if callable(obj):
|
396 |
-
return util.get_top_level_function_name(obj)
|
397 |
-
return obj
|
398 |
-
key = repr(unwind_key(key))
|
399 |
-
|
400 |
-
# Build graph.
|
401 |
-
if key not in self._run_cache:
|
402 |
-
with tfutil.absolute_name_scope(self.scope + "/_Run"), tf.control_dependencies(None):
|
403 |
-
with tf.device("/cpu:0"):
|
404 |
-
in_expr = [tf.placeholder(tf.float32, name=name) for name in self.input_names]
|
405 |
-
in_split = list(zip(*[tf.split(x, num_gpus) for x in in_expr]))
|
406 |
-
|
407 |
-
out_split = []
|
408 |
-
for gpu in range(num_gpus):
|
409 |
-
with tf.device("/gpu:%d" % gpu):
|
410 |
-
net_gpu = self.clone() if assume_frozen else self
|
411 |
-
in_gpu = in_split[gpu]
|
412 |
-
|
413 |
-
if input_transform is not None:
|
414 |
-
in_kwargs = dict(input_transform)
|
415 |
-
in_gpu = in_kwargs.pop("func")(*in_gpu, **in_kwargs)
|
416 |
-
in_gpu = [in_gpu] if tfutil.is_tf_expression(in_gpu) else list(in_gpu)
|
417 |
-
|
418 |
-
assert len(in_gpu) == self.num_inputs
|
419 |
-
out_gpu = net_gpu.get_output_for(*in_gpu, return_as_list=True, **dynamic_kwargs)
|
420 |
-
|
421 |
-
if output_transform is not None:
|
422 |
-
out_kwargs = dict(output_transform)
|
423 |
-
out_gpu = out_kwargs.pop("func")(*out_gpu, **out_kwargs)
|
424 |
-
out_gpu = [out_gpu] if tfutil.is_tf_expression(out_gpu) else list(out_gpu)
|
425 |
-
|
426 |
-
assert len(out_gpu) == self.num_outputs
|
427 |
-
out_split.append(out_gpu)
|
428 |
-
|
429 |
-
with tf.device("/cpu:0"):
|
430 |
-
out_expr = [tf.concat(outputs, axis=0) for outputs in zip(*out_split)]
|
431 |
-
self._run_cache[key] = in_expr, out_expr
|
432 |
-
|
433 |
-
# Run minibatches.
|
434 |
-
in_expr, out_expr = self._run_cache[key]
|
435 |
-
out_arrays = [np.empty([num_items] + expr.shape.as_list()[1:], expr.dtype.name) for expr in out_expr]
|
436 |
-
|
437 |
-
for mb_begin in range(0, num_items, minibatch_size):
|
438 |
-
if print_progress:
|
439 |
-
print("\r%d / %d" % (mb_begin, num_items), end="")
|
440 |
-
|
441 |
-
mb_end = min(mb_begin + minibatch_size, num_items)
|
442 |
-
mb_num = mb_end - mb_begin
|
443 |
-
mb_in = [src[mb_begin : mb_end] if src is not None else np.zeros([mb_num] + shape[1:]) for src, shape in zip(in_arrays, self.input_shapes)]
|
444 |
-
mb_out = tf.get_default_session().run(out_expr, dict(zip(in_expr, mb_in)))
|
445 |
-
|
446 |
-
for dst, src in zip(out_arrays, mb_out):
|
447 |
-
dst[mb_begin: mb_end] = src
|
448 |
-
|
449 |
-
# Done.
|
450 |
-
if print_progress:
|
451 |
-
print("\r%d / %d" % (num_items, num_items))
|
452 |
-
|
453 |
-
if not return_as_list:
|
454 |
-
out_arrays = out_arrays[0] if len(out_arrays) == 1 else tuple(out_arrays)
|
455 |
-
return out_arrays
|
456 |
-
|
457 |
-
def list_ops(self) -> List[TfExpression]:
|
458 |
-
include_prefix = self.scope + "/"
|
459 |
-
exclude_prefix = include_prefix + "_"
|
460 |
-
ops = tf.get_default_graph().get_operations()
|
461 |
-
ops = [op for op in ops if op.name.startswith(include_prefix)]
|
462 |
-
ops = [op for op in ops if not op.name.startswith(exclude_prefix)]
|
463 |
-
return ops
|
464 |
-
|
465 |
-
def list_layers(self) -> List[Tuple[str, TfExpression, List[TfExpression]]]:
|
466 |
-
"""Returns a list of (layer_name, output_expr, trainable_vars) tuples corresponding to
|
467 |
-
individual layers of the network. Mainly intended to be used for reporting."""
|
468 |
-
layers = []
|
469 |
-
|
470 |
-
def recurse(scope, parent_ops, parent_vars, level):
|
471 |
-
# Ignore specific patterns.
|
472 |
-
if any(p in scope for p in ["/Shape", "/strided_slice", "/Cast", "/concat", "/Assign"]):
|
473 |
-
return
|
474 |
-
|
475 |
-
# Filter ops and vars by scope.
|
476 |
-
global_prefix = scope + "/"
|
477 |
-
local_prefix = global_prefix[len(self.scope) + 1:]
|
478 |
-
cur_ops = [op for op in parent_ops if op.name.startswith(global_prefix) or op.name == global_prefix[:-1]]
|
479 |
-
cur_vars = [(name, var) for name, var in parent_vars if name.startswith(local_prefix) or name == local_prefix[:-1]]
|
480 |
-
if not cur_ops and not cur_vars:
|
481 |
-
return
|
482 |
-
|
483 |
-
# Filter out all ops related to variables.
|
484 |
-
for var in [op for op in cur_ops if op.type.startswith("Variable")]:
|
485 |
-
var_prefix = var.name + "/"
|
486 |
-
cur_ops = [op for op in cur_ops if not op.name.startswith(var_prefix)]
|
487 |
-
|
488 |
-
# Scope does not contain ops as immediate children => recurse deeper.
|
489 |
-
contains_direct_ops = any("/" not in op.name[len(global_prefix):] and op.type not in ["Identity", "Cast", "Transpose"] for op in cur_ops)
|
490 |
-
if (level == 0 or not contains_direct_ops) and (len(cur_ops) + len(cur_vars)) > 1:
|
491 |
-
visited = set()
|
492 |
-
for rel_name in [op.name[len(global_prefix):] for op in cur_ops] + [name[len(local_prefix):] for name, _var in cur_vars]:
|
493 |
-
token = rel_name.split("/")[0]
|
494 |
-
if token not in visited:
|
495 |
-
recurse(global_prefix + token, cur_ops, cur_vars, level + 1)
|
496 |
-
visited.add(token)
|
497 |
-
return
|
498 |
-
|
499 |
-
# Report layer.
|
500 |
-
layer_name = scope[len(self.scope) + 1:]
|
501 |
-
layer_output = cur_ops[-1].outputs[0] if cur_ops else cur_vars[-1][1]
|
502 |
-
layer_trainables = [var for _name, var in cur_vars if var.trainable]
|
503 |
-
layers.append((layer_name, layer_output, layer_trainables))
|
504 |
-
|
505 |
-
recurse(self.scope, self.list_ops(), list(self.vars.items()), 0)
|
506 |
-
return layers
|
507 |
-
|
508 |
-
def print_layers(self, title: str = None, hide_layers_with_no_params: bool = False) -> None:
|
509 |
-
"""Print a summary table of the network structure."""
|
510 |
-
rows = [[title if title is not None else self.name, "Params", "OutputShape", "WeightShape"]]
|
511 |
-
rows += [["---"] * 4]
|
512 |
-
total_params = 0
|
513 |
-
|
514 |
-
for layer_name, layer_output, layer_trainables in self.list_layers():
|
515 |
-
num_params = sum(int(np.prod(var.shape.as_list())) for var in layer_trainables)
|
516 |
-
weights = [var for var in layer_trainables if var.name.endswith("/weight:0")]
|
517 |
-
weights.sort(key=lambda x: len(x.name))
|
518 |
-
if len(weights) == 0 and len(layer_trainables) == 1:
|
519 |
-
weights = layer_trainables
|
520 |
-
total_params += num_params
|
521 |
-
|
522 |
-
if not hide_layers_with_no_params or num_params != 0:
|
523 |
-
num_params_str = str(num_params) if num_params > 0 else "-"
|
524 |
-
output_shape_str = str(layer_output.shape)
|
525 |
-
weight_shape_str = str(weights[0].shape) if len(weights) >= 1 else "-"
|
526 |
-
rows += [[layer_name, num_params_str, output_shape_str, weight_shape_str]]
|
527 |
-
|
528 |
-
rows += [["---"] * 4]
|
529 |
-
rows += [["Total", str(total_params), "", ""]]
|
530 |
-
|
531 |
-
widths = [max(len(cell) for cell in column) for column in zip(*rows)]
|
532 |
-
print()
|
533 |
-
for row in rows:
|
534 |
-
print(" ".join(cell + " " * (width - len(cell)) for cell, width in zip(row, widths)))
|
535 |
-
print()
|
536 |
-
|
537 |
-
def setup_weight_histograms(self, title: str = None) -> None:
|
538 |
-
"""Construct summary ops to include histograms of all trainable parameters in TensorBoard."""
|
539 |
-
if title is None:
|
540 |
-
title = self.name
|
541 |
-
|
542 |
-
with tf.name_scope(None), tf.device(None), tf.control_dependencies(None):
|
543 |
-
for local_name, var in self.trainables.items():
|
544 |
-
if "/" in local_name:
|
545 |
-
p = local_name.split("/")
|
546 |
-
name = title + "_" + p[-1] + "/" + "_".join(p[:-1])
|
547 |
-
else:
|
548 |
-
name = title + "_toplevel/" + local_name
|
549 |
-
|
550 |
-
tf.summary.histogram(name, var)
|
551 |
-
|
552 |
-
#----------------------------------------------------------------------------
|
553 |
-
# Backwards-compatible emulation of legacy output transformation in Network.run().
|
554 |
-
|
555 |
-
_print_legacy_warning = True
|
556 |
-
|
557 |
-
def _handle_legacy_output_transforms(output_transform, dynamic_kwargs):
|
558 |
-
global _print_legacy_warning
|
559 |
-
legacy_kwargs = ["out_mul", "out_add", "out_shrink", "out_dtype"]
|
560 |
-
if not any(kwarg in dynamic_kwargs for kwarg in legacy_kwargs):
|
561 |
-
return output_transform, dynamic_kwargs
|
562 |
-
|
563 |
-
if _print_legacy_warning:
|
564 |
-
_print_legacy_warning = False
|
565 |
-
print()
|
566 |
-
print("WARNING: Old-style output transformations in Network.run() are deprecated.")
|
567 |
-
print("Consider using 'output_transform=dict(func=tflib.convert_images_to_uint8)'")
|
568 |
-
print("instead of 'out_mul=127.5, out_add=127.5, out_dtype=np.uint8'.")
|
569 |
-
print()
|
570 |
-
assert output_transform is None
|
571 |
-
|
572 |
-
new_kwargs = dict(dynamic_kwargs)
|
573 |
-
new_transform = {kwarg: new_kwargs.pop(kwarg) for kwarg in legacy_kwargs if kwarg in dynamic_kwargs}
|
574 |
-
new_transform["func"] = _legacy_output_transform_func
|
575 |
-
return new_transform, new_kwargs
|
576 |
-
|
577 |
-
def _legacy_output_transform_func(*expr, out_mul=1.0, out_add=0.0, out_shrink=1, out_dtype=None):
|
578 |
-
if out_mul != 1.0:
|
579 |
-
expr = [x * out_mul for x in expr]
|
580 |
-
|
581 |
-
if out_add != 0.0:
|
582 |
-
expr = [x + out_add for x in expr]
|
583 |
-
|
584 |
-
if out_shrink > 1:
|
585 |
-
ksize = [1, 1, out_shrink, out_shrink]
|
586 |
-
expr = [tf.nn.avg_pool(x, ksize=ksize, strides=ksize, padding="VALID", data_format="NCHW") for x in expr]
|
587 |
-
|
588 |
-
if out_dtype is not None:
|
589 |
-
if tf.as_dtype(out_dtype).is_integer:
|
590 |
-
expr = [tf.round(x) for x in expr]
|
591 |
-
expr = [tf.saturate_cast(x, out_dtype) for x in expr]
|
592 |
-
return expr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
dnnlib/tflib/ops/__init__.py
DELETED
@@ -1,9 +0,0 @@
|
|
1 |
-
# Copyright (c) SenseTime Research. All rights reserved.
|
2 |
-
|
3 |
-
# Copyright (c) 2019, NVIDIA Corporation. All rights reserved.
|
4 |
-
#
|
5 |
-
# This work is made available under the Nvidia Source Code License-NC.
|
6 |
-
# To view a copy of this license, visit
|
7 |
-
# https://nvlabs.github.io/stylegan2/license.html
|
8 |
-
|
9 |
-
# empty
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
dnnlib/tflib/ops/fused_bias_act.cu
DELETED
@@ -1,190 +0,0 @@
|
|
1 |
-
// Copyright (c) SenseTime Research. All rights reserved.
|
2 |
-
|
3 |
-
// Copyright (c) 2019, NVIDIA Corporation. All rights reserved.
|
4 |
-
//
|
5 |
-
// This work is made available under the Nvidia Source Code License-NC.
|
6 |
-
// To view a copy of this license, visit
|
7 |
-
// https://nvlabs.github.io/stylegan2/license.html
|
8 |
-
|
9 |
-
#define EIGEN_USE_GPU
|
10 |
-
#define __CUDA_INCLUDE_COMPILER_INTERNAL_HEADERS__
|
11 |
-
#include "tensorflow/core/framework/op.h"
|
12 |
-
#include "tensorflow/core/framework/op_kernel.h"
|
13 |
-
#include "tensorflow/core/framework/shape_inference.h"
|
14 |
-
#include <stdio.h>
|
15 |
-
|
16 |
-
using namespace tensorflow;
|
17 |
-
using namespace tensorflow::shape_inference;
|
18 |
-
|
19 |
-
#define OP_CHECK_CUDA_ERROR(CTX, CUDA_CALL) do { cudaError_t err = CUDA_CALL; OP_REQUIRES(CTX, err == cudaSuccess, errors::Internal(cudaGetErrorName(err))); } while (false)
|
20 |
-
|
21 |
-
//------------------------------------------------------------------------
|
22 |
-
// CUDA kernel.
|
23 |
-
|
24 |
-
template <class T>
|
25 |
-
struct FusedBiasActKernelParams
|
26 |
-
{
|
27 |
-
const T* x; // [sizeX]
|
28 |
-
const T* b; // [sizeB] or NULL
|
29 |
-
const T* ref; // [sizeX] or NULL
|
30 |
-
T* y; // [sizeX]
|
31 |
-
|
32 |
-
int grad;
|
33 |
-
int axis;
|
34 |
-
int act;
|
35 |
-
float alpha;
|
36 |
-
float gain;
|
37 |
-
|
38 |
-
int sizeX;
|
39 |
-
int sizeB;
|
40 |
-
int stepB;
|
41 |
-
int loopX;
|
42 |
-
};
|
43 |
-
|
44 |
-
template <class T>
|
45 |
-
static __global__ void FusedBiasActKernel(const FusedBiasActKernelParams<T> p)
|
46 |
-
{
|
47 |
-
const float expRange = 80.0f;
|
48 |
-
const float halfExpRange = 40.0f;
|
49 |
-
const float seluScale = 1.0507009873554804934193349852946f;
|
50 |
-
const float seluAlpha = 1.6732632423543772848170429916717f;
|
51 |
-
|
52 |
-
// Loop over elements.
|
53 |
-
int xi = blockIdx.x * p.loopX * blockDim.x + threadIdx.x;
|
54 |
-
for (int loopIdx = 0; loopIdx < p.loopX && xi < p.sizeX; loopIdx++, xi += blockDim.x)
|
55 |
-
{
|
56 |
-
// Load and apply bias.
|
57 |
-
float x = (float)p.x[xi];
|
58 |
-
if (p.b)
|
59 |
-
x += (float)p.b[(xi / p.stepB) % p.sizeB];
|
60 |
-
float ref = (p.ref) ? (float)p.ref[xi] : 0.0f;
|
61 |
-
if (p.gain != 0.0f & p.act != 9)
|
62 |
-
ref /= p.gain;
|
63 |
-
|
64 |
-
// Evaluate activation func.
|
65 |
-
float y;
|
66 |
-
switch (p.act * 10 + p.grad)
|
67 |
-
{
|
68 |
-
// linear
|
69 |
-
default:
|
70 |
-
case 10: y = x; break;
|
71 |
-
case 11: y = x; break;
|
72 |
-
case 12: y = 0.0f; break;
|
73 |
-
|
74 |
-
// relu
|
75 |
-
case 20: y = (x > 0.0f) ? x : 0.0f; break;
|
76 |
-
case 21: y = (ref > 0.0f) ? x : 0.0f; break;
|
77 |
-
case 22: y = 0.0f; break;
|
78 |
-
|
79 |
-
// lrelu
|
80 |
-
case 30: y = (x > 0.0f) ? x : x * p.alpha; break;
|
81 |
-
case 31: y = (ref > 0.0f) ? x : x * p.alpha; break;
|
82 |
-
case 32: y = 0.0f; break;
|
83 |
-
|
84 |
-
// tanh
|
85 |
-
case 40: { float c = expf(x); float d = 1.0f / c; y = (x < -expRange) ? -1.0f : (x > expRange) ? 1.0f : (c - d) / (c + d); } break;
|
86 |
-
case 41: y = x * (1.0f - ref * ref); break;
|
87 |
-
case 42: y = x * (1.0f - ref * ref) * (-2.0f * ref); break;
|
88 |
-
|
89 |
-
// sigmoid
|
90 |
-
case 50: y = (x < -expRange) ? 0.0f : 1.0f / (expf(-x) + 1.0f); break;
|
91 |
-
case 51: y = x * ref * (1.0f - ref); break;
|
92 |
-
case 52: y = x * ref * (1.0f - ref) * (1.0f - 2.0f * ref); break;
|
93 |
-
|
94 |
-
// elu
|
95 |
-
case 60: y = (x >= 0.0f) ? x : expf(x) - 1.0f; break;
|
96 |
-
case 61: y = (ref >= 0.0f) ? x : x * (ref + 1.0f); break;
|
97 |
-
case 62: y = (ref >= 0.0f) ? 0.0f : x * (ref + 1.0f); break;
|
98 |
-
|
99 |
-
// selu
|
100 |
-
case 70: y = (x >= 0.0f) ? seluScale * x : (seluScale * seluAlpha) * (expf(x) - 1.0f); break;
|
101 |
-
case 71: y = (ref >= 0.0f) ? x * seluScale : x * (ref + seluScale * seluAlpha); break;
|
102 |
-
case 72: y = (ref >= 0.0f) ? 0.0f : x * (ref + seluScale * seluAlpha); break;
|
103 |
-
|
104 |
-
// softplus
|
105 |
-
case 80: y = (x > expRange) ? x : logf(expf(x) + 1.0f); break;
|
106 |
-
case 81: y = x * (1.0f - expf(-ref)); break;
|
107 |
-
case 82: { float c = expf(-ref); y = x * c * (1.0f - c); } break;
|
108 |
-
|
109 |
-
// swish
|
110 |
-
case 90: y = (x < -expRange) ? 0.0f : x / (expf(-x) + 1.0f); break;
|
111 |
-
case 91: { float c = expf(ref); float d = c + 1.0f; y = (ref > halfExpRange) ? x : x * c * (ref + d) / (d * d); } break;
|
112 |
-
case 92: { float c = expf(ref); float d = c + 1.0f; y = (ref > halfExpRange) ? 0.0f : x * c * (ref * (2.0f - d) + 2.0f * d) / (d * d * d); } break;
|
113 |
-
}
|
114 |
-
|
115 |
-
// Apply gain and store.
|
116 |
-
p.y[xi] = (T)(y * p.gain);
|
117 |
-
}
|
118 |
-
}
|
119 |
-
|
120 |
-
//------------------------------------------------------------------------
|
121 |
-
// TensorFlow op.
|
122 |
-
|
123 |
-
template <class T>
|
124 |
-
struct FusedBiasActOp : public OpKernel
|
125 |
-
{
|
126 |
-
FusedBiasActKernelParams<T> m_attribs;
|
127 |
-
|
128 |
-
FusedBiasActOp(OpKernelConstruction* ctx) : OpKernel(ctx)
|
129 |
-
{
|
130 |
-
memset(&m_attribs, 0, sizeof(m_attribs));
|
131 |
-
OP_REQUIRES_OK(ctx, ctx->GetAttr("grad", &m_attribs.grad));
|
132 |
-
OP_REQUIRES_OK(ctx, ctx->GetAttr("axis", &m_attribs.axis));
|
133 |
-
OP_REQUIRES_OK(ctx, ctx->GetAttr("act", &m_attribs.act));
|
134 |
-
OP_REQUIRES_OK(ctx, ctx->GetAttr("alpha", &m_attribs.alpha));
|
135 |
-
OP_REQUIRES_OK(ctx, ctx->GetAttr("gain", &m_attribs.gain));
|
136 |
-
OP_REQUIRES(ctx, m_attribs.grad >= 0, errors::InvalidArgument("grad must be non-negative"));
|
137 |
-
OP_REQUIRES(ctx, m_attribs.axis >= 0, errors::InvalidArgument("axis must be non-negative"));
|
138 |
-
OP_REQUIRES(ctx, m_attribs.act >= 0, errors::InvalidArgument("act must be non-negative"));
|
139 |
-
}
|
140 |
-
|
141 |
-
void Compute(OpKernelContext* ctx)
|
142 |
-
{
|
143 |
-
FusedBiasActKernelParams<T> p = m_attribs;
|
144 |
-
cudaStream_t stream = ctx->eigen_device<Eigen::GpuDevice>().stream();
|
145 |
-
|
146 |
-
const Tensor& x = ctx->input(0); // [...]
|
147 |
-
const Tensor& b = ctx->input(1); // [sizeB] or [0]
|
148 |
-
const Tensor& ref = ctx->input(2); // x.shape or [0]
|
149 |
-
p.x = x.flat<T>().data();
|
150 |
-
p.b = (b.NumElements()) ? b.flat<T>().data() : NULL;
|
151 |
-
p.ref = (ref.NumElements()) ? ref.flat<T>().data() : NULL;
|
152 |
-
OP_REQUIRES(ctx, b.NumElements() == 0 || m_attribs.axis < x.dims(), errors::InvalidArgument("axis out of bounds"));
|
153 |
-
OP_REQUIRES(ctx, b.dims() == 1, errors::InvalidArgument("b must have rank 1"));
|
154 |
-
OP_REQUIRES(ctx, b.NumElements() == 0 || b.NumElements() == x.dim_size(m_attribs.axis), errors::InvalidArgument("b has wrong number of elements"));
|
155 |
-
OP_REQUIRES(ctx, ref.NumElements() == ((p.grad == 0) ? 0 : x.NumElements()), errors::InvalidArgument("ref has wrong number of elements"));
|
156 |
-
OP_REQUIRES(ctx, x.NumElements() <= kint32max, errors::InvalidArgument("x is too large"));
|
157 |
-
|
158 |
-
p.sizeX = (int)x.NumElements();
|
159 |
-
p.sizeB = (int)b.NumElements();
|
160 |
-
p.stepB = 1;
|
161 |
-
for (int i = m_attribs.axis + 1; i < x.dims(); i++)
|
162 |
-
p.stepB *= (int)x.dim_size(i);
|
163 |
-
|
164 |
-
Tensor* y = NULL; // x.shape
|
165 |
-
OP_REQUIRES_OK(ctx, ctx->allocate_output(0, x.shape(), &y));
|
166 |
-
p.y = y->flat<T>().data();
|
167 |
-
|
168 |
-
p.loopX = 4;
|
169 |
-
int blockSize = 4 * 32;
|
170 |
-
int gridSize = (p.sizeX - 1) / (p.loopX * blockSize) + 1;
|
171 |
-
void* args[] = {&p};
|
172 |
-
OP_CHECK_CUDA_ERROR(ctx, cudaLaunchKernel((void*)FusedBiasActKernel<T>, gridSize, blockSize, args, 0, stream));
|
173 |
-
}
|
174 |
-
};
|
175 |
-
|
176 |
-
REGISTER_OP("FusedBiasAct")
|
177 |
-
.Input ("x: T")
|
178 |
-
.Input ("b: T")
|
179 |
-
.Input ("ref: T")
|
180 |
-
.Output ("y: T")
|
181 |
-
.Attr ("T: {float, half}")
|
182 |
-
.Attr ("grad: int = 0")
|
183 |
-
.Attr ("axis: int = 1")
|
184 |
-
.Attr ("act: int = 0")
|
185 |
-
.Attr ("alpha: float = 0.0")
|
186 |
-
.Attr ("gain: float = 1.0");
|
187 |
-
REGISTER_KERNEL_BUILDER(Name("FusedBiasAct").Device(DEVICE_GPU).TypeConstraint<float>("T"), FusedBiasActOp<float>);
|
188 |
-
REGISTER_KERNEL_BUILDER(Name("FusedBiasAct").Device(DEVICE_GPU).TypeConstraint<Eigen::half>("T"), FusedBiasActOp<Eigen::half>);
|
189 |
-
|
190 |
-
//------------------------------------------------------------------------
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
dnnlib/tflib/ops/fused_bias_act.py
DELETED
@@ -1,198 +0,0 @@
|
|
1 |
-
# Copyright (c) SenseTime Research. All rights reserved.
|
2 |
-
|
3 |
-
# Copyright (c) 2019, NVIDIA Corporation. All rights reserved.
|
4 |
-
#
|
5 |
-
# This work is made available under the Nvidia Source Code License-NC.
|
6 |
-
# To view a copy of this license, visit
|
7 |
-
# https://nvlabs.github.io/stylegan2/license.html
|
8 |
-
|
9 |
-
"""Custom TensorFlow ops for efficient bias and activation."""
|
10 |
-
|
11 |
-
import os
|
12 |
-
import numpy as np
|
13 |
-
import tensorflow as tf
|
14 |
-
from .. import custom_ops
|
15 |
-
from ...util import EasyDict
|
16 |
-
|
17 |
-
def _get_plugin():
|
18 |
-
return custom_ops.get_plugin(os.path.splitext(__file__)[0] + '.cu')
|
19 |
-
|
20 |
-
#----------------------------------------------------------------------------
|
21 |
-
|
22 |
-
activation_funcs = {
|
23 |
-
'linear': EasyDict(func=lambda x, **_: x, def_alpha=None, def_gain=1.0, cuda_idx=1, ref='y', zero_2nd_grad=True),
|
24 |
-
'relu': EasyDict(func=lambda x, **_: tf.nn.relu(x), def_alpha=None, def_gain=np.sqrt(2), cuda_idx=2, ref='y', zero_2nd_grad=True),
|
25 |
-
'lrelu': EasyDict(func=lambda x, alpha, **_: tf.nn.leaky_relu(x, alpha), def_alpha=0.2, def_gain=np.sqrt(2), cuda_idx=3, ref='y', zero_2nd_grad=True),
|
26 |
-
'tanh': EasyDict(func=lambda x, **_: tf.nn.tanh(x), def_alpha=None, def_gain=1.0, cuda_idx=4, ref='y', zero_2nd_grad=False),
|
27 |
-
'sigmoid': EasyDict(func=lambda x, **_: tf.nn.sigmoid(x), def_alpha=None, def_gain=1.0, cuda_idx=5, ref='y', zero_2nd_grad=False),
|
28 |
-
'elu': EasyDict(func=lambda x, **_: tf.nn.elu(x), def_alpha=None, def_gain=1.0, cuda_idx=6, ref='y', zero_2nd_grad=False),
|
29 |
-
'selu': EasyDict(func=lambda x, **_: tf.nn.selu(x), def_alpha=None, def_gain=1.0, cuda_idx=7, ref='y', zero_2nd_grad=False),
|
30 |
-
'softplus': EasyDict(func=lambda x, **_: tf.nn.softplus(x), def_alpha=None, def_gain=1.0, cuda_idx=8, ref='y', zero_2nd_grad=False),
|
31 |
-
'swish': EasyDict(func=lambda x, **_: tf.nn.sigmoid(x) * x, def_alpha=None, def_gain=np.sqrt(2), cuda_idx=9, ref='x', zero_2nd_grad=False),
|
32 |
-
}
|
33 |
-
|
34 |
-
#----------------------------------------------------------------------------
|
35 |
-
|
36 |
-
def fused_bias_act(x, b=None, axis=1, act='linear', alpha=None, gain=None, impl='cuda'):
|
37 |
-
r"""Fused bias and activation function.
|
38 |
-
|
39 |
-
Adds bias `b` to activation tensor `x`, evaluates activation function `act`,
|
40 |
-
and scales the result by `gain`. Each of the steps is optional. In most cases,
|
41 |
-
the fused op is considerably more efficient than performing the same calculation
|
42 |
-
using standard TensorFlow ops. It supports first and second order gradients,
|
43 |
-
but not third order gradients.
|
44 |
-
|
45 |
-
Args:
|
46 |
-
x: Input activation tensor. Can have any shape, but if `b` is defined, the
|
47 |
-
dimension corresponding to `axis`, as well as the rank, must be known.
|
48 |
-
b: Bias vector, or `None` to disable. Must be a 1D tensor of the same type
|
49 |
-
as `x`. The shape must be known, and it must match the dimension of `x`
|
50 |
-
corresponding to `axis`.
|
51 |
-
axis: The dimension in `x` corresponding to the elements of `b`.
|
52 |
-
The value of `axis` is ignored if `b` is not specified.
|
53 |
-
act: Name of the activation function to evaluate, or `"linear"` to disable.
|
54 |
-
Can be e.g. `"relu"`, `"lrelu"`, `"tanh"`, `"sigmoid"`, `"swish"`, etc.
|
55 |
-
See `activation_funcs` for a full list. `None` is not allowed.
|
56 |
-
alpha: Shape parameter for the activation function, or `None` to use the default.
|
57 |
-
gain: Scaling factor for the output tensor, or `None` to use default.
|
58 |
-
See `activation_funcs` for the default scaling of each activation function.
|
59 |
-
If unsure, consider specifying `1.0`.
|
60 |
-
impl: Name of the implementation to use. Can be `"ref"` or `"cuda"` (default).
|
61 |
-
|
62 |
-
Returns:
|
63 |
-
Tensor of the same shape and datatype as `x`.
|
64 |
-
"""
|
65 |
-
|
66 |
-
impl_dict = {
|
67 |
-
'ref': _fused_bias_act_ref,
|
68 |
-
'cuda': _fused_bias_act_cuda,
|
69 |
-
}
|
70 |
-
return impl_dict[impl](x=x, b=b, axis=axis, act=act, alpha=alpha, gain=gain)
|
71 |
-
|
72 |
-
#----------------------------------------------------------------------------
|
73 |
-
|
74 |
-
def _fused_bias_act_ref(x, b, axis, act, alpha, gain):
|
75 |
-
"""Slow reference implementation of `fused_bias_act()` using standard TensorFlow ops."""
|
76 |
-
|
77 |
-
# Validate arguments.
|
78 |
-
x = tf.convert_to_tensor(x)
|
79 |
-
b = tf.convert_to_tensor(b) if b is not None else tf.constant([], dtype=x.dtype)
|
80 |
-
act_spec = activation_funcs[act]
|
81 |
-
assert b.shape.rank == 1 and (b.shape[0] == 0 or b.shape[0] == x.shape[axis])
|
82 |
-
assert b.shape[0] == 0 or 0 <= axis < x.shape.rank
|
83 |
-
if alpha is None:
|
84 |
-
alpha = act_spec.def_alpha
|
85 |
-
if gain is None:
|
86 |
-
gain = act_spec.def_gain
|
87 |
-
|
88 |
-
# Add bias.
|
89 |
-
if b.shape[0] != 0:
|
90 |
-
x += tf.reshape(b, [-1 if i == axis else 1 for i in range(x.shape.rank)])
|
91 |
-
|
92 |
-
# Evaluate activation function.
|
93 |
-
x = act_spec.func(x, alpha=alpha)
|
94 |
-
|
95 |
-
# Scale by gain.
|
96 |
-
if gain != 1:
|
97 |
-
x *= gain
|
98 |
-
return x
|
99 |
-
|
100 |
-
#----------------------------------------------------------------------------
|
101 |
-
|
102 |
-
def _fused_bias_act_cuda(x, b, axis, act, alpha, gain):
|
103 |
-
"""Fast CUDA implementation of `fused_bias_act()` using custom ops."""
|
104 |
-
|
105 |
-
# Validate arguments.
|
106 |
-
x = tf.convert_to_tensor(x)
|
107 |
-
empty_tensor = tf.constant([], dtype=x.dtype)
|
108 |
-
b = tf.convert_to_tensor(b) if b is not None else empty_tensor
|
109 |
-
act_spec = activation_funcs[act]
|
110 |
-
assert b.shape.rank == 1 and (b.shape[0] == 0 or b.shape[0] == x.shape[axis])
|
111 |
-
assert b.shape[0] == 0 or 0 <= axis < x.shape.rank
|
112 |
-
if alpha is None:
|
113 |
-
alpha = act_spec.def_alpha
|
114 |
-
if gain is None:
|
115 |
-
gain = act_spec.def_gain
|
116 |
-
|
117 |
-
# Special cases.
|
118 |
-
if act == 'linear' and b is None and gain == 1.0:
|
119 |
-
return x
|
120 |
-
if act_spec.cuda_idx is None:
|
121 |
-
return _fused_bias_act_ref(x=x, b=b, axis=axis, act=act, alpha=alpha, gain=gain)
|
122 |
-
|
123 |
-
# CUDA kernel.
|
124 |
-
cuda_kernel = _get_plugin().fused_bias_act
|
125 |
-
cuda_kwargs = dict(axis=axis, act=act_spec.cuda_idx, alpha=alpha, gain=gain)
|
126 |
-
|
127 |
-
# Forward pass: y = func(x, b).
|
128 |
-
def func_y(x, b):
|
129 |
-
y = cuda_kernel(x=x, b=b, ref=empty_tensor, grad=0, **cuda_kwargs)
|
130 |
-
y.set_shape(x.shape)
|
131 |
-
return y
|
132 |
-
|
133 |
-
# Backward pass: dx, db = grad(dy, x, y)
|
134 |
-
def grad_dx(dy, x, y):
|
135 |
-
ref = {'x': x, 'y': y}[act_spec.ref]
|
136 |
-
dx = cuda_kernel(x=dy, b=empty_tensor, ref=ref, grad=1, **cuda_kwargs)
|
137 |
-
dx.set_shape(x.shape)
|
138 |
-
return dx
|
139 |
-
def grad_db(dx):
|
140 |
-
if b.shape[0] == 0:
|
141 |
-
return empty_tensor
|
142 |
-
db = dx
|
143 |
-
if axis < x.shape.rank - 1:
|
144 |
-
db = tf.reduce_sum(db, list(range(axis + 1, x.shape.rank)))
|
145 |
-
if axis > 0:
|
146 |
-
db = tf.reduce_sum(db, list(range(axis)))
|
147 |
-
db.set_shape(b.shape)
|
148 |
-
return db
|
149 |
-
|
150 |
-
# Second order gradients: d_dy, d_x = grad2(d_dx, d_db, x, y)
|
151 |
-
def grad2_d_dy(d_dx, d_db, x, y):
|
152 |
-
ref = {'x': x, 'y': y}[act_spec.ref]
|
153 |
-
d_dy = cuda_kernel(x=d_dx, b=d_db, ref=ref, grad=1, **cuda_kwargs)
|
154 |
-
d_dy.set_shape(x.shape)
|
155 |
-
return d_dy
|
156 |
-
def grad2_d_x(d_dx, d_db, x, y):
|
157 |
-
ref = {'x': x, 'y': y}[act_spec.ref]
|
158 |
-
d_x = cuda_kernel(x=d_dx, b=d_db, ref=ref, grad=2, **cuda_kwargs)
|
159 |
-
d_x.set_shape(x.shape)
|
160 |
-
return d_x
|
161 |
-
|
162 |
-
# Fast version for piecewise-linear activation funcs.
|
163 |
-
@tf.custom_gradient
|
164 |
-
def func_zero_2nd_grad(x, b):
|
165 |
-
y = func_y(x, b)
|
166 |
-
@tf.custom_gradient
|
167 |
-
def grad(dy):
|
168 |
-
dx = grad_dx(dy, x, y)
|
169 |
-
db = grad_db(dx)
|
170 |
-
def grad2(d_dx, d_db):
|
171 |
-
d_dy = grad2_d_dy(d_dx, d_db, x, y)
|
172 |
-
return d_dy
|
173 |
-
return (dx, db), grad2
|
174 |
-
return y, grad
|
175 |
-
|
176 |
-
# Slow version for general activation funcs.
|
177 |
-
@tf.custom_gradient
|
178 |
-
def func_nonzero_2nd_grad(x, b):
|
179 |
-
y = func_y(x, b)
|
180 |
-
def grad_wrap(dy):
|
181 |
-
@tf.custom_gradient
|
182 |
-
def grad_impl(dy, x):
|
183 |
-
dx = grad_dx(dy, x, y)
|
184 |
-
db = grad_db(dx)
|
185 |
-
def grad2(d_dx, d_db):
|
186 |
-
d_dy = grad2_d_dy(d_dx, d_db, x, y)
|
187 |
-
d_x = grad2_d_x(d_dx, d_db, x, y)
|
188 |
-
return d_dy, d_x
|
189 |
-
return (dx, db), grad2
|
190 |
-
return grad_impl(dy, x)
|
191 |
-
return y, grad_wrap
|
192 |
-
|
193 |
-
# Which version to use?
|
194 |
-
if act_spec.zero_2nd_grad:
|
195 |
-
return func_zero_2nd_grad(x, b)
|
196 |
-
return func_nonzero_2nd_grad(x, b)
|
197 |
-
|
198 |
-
#----------------------------------------------------------------------------
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
dnnlib/tflib/ops/upfirdn_2d.cu
DELETED
@@ -1,328 +0,0 @@
|
|
1 |
-
// Copyright (c) SenseTime Research. All rights reserved.
|
2 |
-
|
3 |
-
// Copyright (c) 2019, NVIDIA Corporation. All rights reserved.
|
4 |
-
//
|
5 |
-
// This work is made available under the Nvidia Source Code License-NC.
|
6 |
-
// To view a copy of this license, visit
|
7 |
-
// https://nvlabs.github.io/stylegan2/license.html
|
8 |
-
|
9 |
-
#define EIGEN_USE_GPU
|
10 |
-
#define __CUDA_INCLUDE_COMPILER_INTERNAL_HEADERS__
|
11 |
-
#include "tensorflow/core/framework/op.h"
|
12 |
-
#include "tensorflow/core/framework/op_kernel.h"
|
13 |
-
#include "tensorflow/core/framework/shape_inference.h"
|
14 |
-
#include <stdio.h>
|
15 |
-
|
16 |
-
using namespace tensorflow;
|
17 |
-
using namespace tensorflow::shape_inference;
|
18 |
-
|
19 |
-
//------------------------------------------------------------------------
|
20 |
-
// Helpers.
|
21 |
-
|
22 |
-
#define OP_CHECK_CUDA_ERROR(CTX, CUDA_CALL) do { cudaError_t err = CUDA_CALL; OP_REQUIRES(CTX, err == cudaSuccess, errors::Internal(cudaGetErrorName(err))); } while (false)
|
23 |
-
|
24 |
-
static __host__ __device__ __forceinline__ int floorDiv(int a, int b)
|
25 |
-
{
|
26 |
-
int c = a / b;
|
27 |
-
if (c * b > a)
|
28 |
-
c--;
|
29 |
-
return c;
|
30 |
-
}
|
31 |
-
|
32 |
-
//------------------------------------------------------------------------
|
33 |
-
// CUDA kernel params.
|
34 |
-
|
35 |
-
template <class T>
|
36 |
-
struct UpFirDn2DKernelParams
|
37 |
-
{
|
38 |
-
const T* x; // [majorDim, inH, inW, minorDim]
|
39 |
-
const T* k; // [kernelH, kernelW]
|
40 |
-
T* y; // [majorDim, outH, outW, minorDim]
|
41 |
-
|
42 |
-
int upx;
|
43 |
-
int upy;
|
44 |
-
int downx;
|
45 |
-
int downy;
|
46 |
-
int padx0;
|
47 |
-
int padx1;
|
48 |
-
int pady0;
|
49 |
-
int pady1;
|
50 |
-
|
51 |
-
int majorDim;
|
52 |
-
int inH;
|
53 |
-
int inW;
|
54 |
-
int minorDim;
|
55 |
-
int kernelH;
|
56 |
-
int kernelW;
|
57 |
-
int outH;
|
58 |
-
int outW;
|
59 |
-
int loopMajor;
|
60 |
-
int loopX;
|
61 |
-
};
|
62 |
-
|
63 |
-
//------------------------------------------------------------------------
|
64 |
-
// General CUDA implementation for large filter kernels.
|
65 |
-
|
66 |
-
template <class T>
|
67 |
-
static __global__ void UpFirDn2DKernel_large(const UpFirDn2DKernelParams<T> p)
|
68 |
-
{
|
69 |
-
// Calculate thread index.
|
70 |
-
int minorIdx = blockIdx.x * blockDim.x + threadIdx.x;
|
71 |
-
int outY = minorIdx / p.minorDim;
|
72 |
-
minorIdx -= outY * p.minorDim;
|
73 |
-
int outXBase = blockIdx.y * p.loopX * blockDim.y + threadIdx.y;
|
74 |
-
int majorIdxBase = blockIdx.z * p.loopMajor;
|
75 |
-
if (outXBase >= p.outW || outY >= p.outH || majorIdxBase >= p.majorDim)
|
76 |
-
return;
|
77 |
-
|
78 |
-
// Setup Y receptive field.
|
79 |
-
int midY = outY * p.downy + p.upy - 1 - p.pady0;
|
80 |
-
int inY = min(max(floorDiv(midY, p.upy), 0), p.inH);
|
81 |
-
int h = min(max(floorDiv(midY + p.kernelH, p.upy), 0), p.inH) - inY;
|
82 |
-
int kernelY = midY + p.kernelH - (inY + 1) * p.upy;
|
83 |
-
|
84 |
-
// Loop over majorDim and outX.
|
85 |
-
for (int loopMajor = 0, majorIdx = majorIdxBase; loopMajor < p.loopMajor && majorIdx < p.majorDim; loopMajor++, majorIdx++)
|
86 |
-
for (int loopX = 0, outX = outXBase; loopX < p.loopX && outX < p.outW; loopX++, outX += blockDim.y)
|
87 |
-
{
|
88 |
-
// Setup X receptive field.
|
89 |
-
int midX = outX * p.downx + p.upx - 1 - p.padx0;
|
90 |
-
int inX = min(max(floorDiv(midX, p.upx), 0), p.inW);
|
91 |
-
int w = min(max(floorDiv(midX + p.kernelW, p.upx), 0), p.inW) - inX;
|
92 |
-
int kernelX = midX + p.kernelW - (inX + 1) * p.upx;
|
93 |
-
|
94 |
-
// Initialize pointers.
|
95 |
-
const T* xp = &p.x[((majorIdx * p.inH + inY) * p.inW + inX) * p.minorDim + minorIdx];
|
96 |
-
const T* kp = &p.k[kernelY * p.kernelW + kernelX];
|
97 |
-
int xpx = p.minorDim;
|
98 |
-
int kpx = -p.upx;
|
99 |
-
int xpy = p.inW * p.minorDim;
|
100 |
-
int kpy = -p.upy * p.kernelW;
|
101 |
-
|
102 |
-
// Inner loop.
|
103 |
-
float v = 0.0f;
|
104 |
-
for (int y = 0; y < h; y++)
|
105 |
-
{
|
106 |
-
for (int x = 0; x < w; x++)
|
107 |
-
{
|
108 |
-
v += (float)(*xp) * (float)(*kp);
|
109 |
-
xp += xpx;
|
110 |
-
kp += kpx;
|
111 |
-
}
|
112 |
-
xp += xpy - w * xpx;
|
113 |
-
kp += kpy - w * kpx;
|
114 |
-
}
|
115 |
-
|
116 |
-
// Store result.
|
117 |
-
p.y[((majorIdx * p.outH + outY) * p.outW + outX) * p.minorDim + minorIdx] = (T)v;
|
118 |
-
}
|
119 |
-
}
|
120 |
-
|
121 |
-
//------------------------------------------------------------------------
|
122 |
-
// Specialized CUDA implementation for small filter kernels.
|
123 |
-
|
124 |
-
template <class T, int upx, int upy, int downx, int downy, int kernelW, int kernelH, int tileOutW, int tileOutH>
|
125 |
-
static __global__ void UpFirDn2DKernel_small(const UpFirDn2DKernelParams<T> p)
|
126 |
-
{
|
127 |
-
//assert(kernelW % upx == 0);
|
128 |
-
//assert(kernelH % upy == 0);
|
129 |
-
const int tileInW = ((tileOutW - 1) * downx + kernelW - 1) / upx + 1;
|
130 |
-
const int tileInH = ((tileOutH - 1) * downy + kernelH - 1) / upy + 1;
|
131 |
-
__shared__ volatile float sk[kernelH][kernelW];
|
132 |
-
__shared__ volatile float sx[tileInH][tileInW];
|
133 |
-
|
134 |
-
// Calculate tile index.
|
135 |
-
int minorIdx = blockIdx.x;
|
136 |
-
int tileOutY = minorIdx / p.minorDim;
|
137 |
-
minorIdx -= tileOutY * p.minorDim;
|
138 |
-
tileOutY *= tileOutH;
|
139 |
-
int tileOutXBase = blockIdx.y * p.loopX * tileOutW;
|
140 |
-
int majorIdxBase = blockIdx.z * p.loopMajor;
|
141 |
-
if (tileOutXBase >= p.outW | tileOutY >= p.outH | majorIdxBase >= p.majorDim)
|
142 |
-
return;
|
143 |
-
|
144 |
-
// Load filter kernel (flipped).
|
145 |
-
for (int tapIdx = threadIdx.x; tapIdx < kernelH * kernelW; tapIdx += blockDim.x)
|
146 |
-
{
|
147 |
-
int ky = tapIdx / kernelW;
|
148 |
-
int kx = tapIdx - ky * kernelW;
|
149 |
-
float v = 0.0f;
|
150 |
-
if (kx < p.kernelW & ky < p.kernelH)
|
151 |
-
v = (float)p.k[(p.kernelH - 1 - ky) * p.kernelW + (p.kernelW - 1 - kx)];
|
152 |
-
sk[ky][kx] = v;
|
153 |
-
}
|
154 |
-
|
155 |
-
// Loop over majorDim and outX.
|
156 |
-
for (int loopMajor = 0, majorIdx = majorIdxBase; loopMajor < p.loopMajor & majorIdx < p.majorDim; loopMajor++, majorIdx++)
|
157 |
-
for (int loopX = 0, tileOutX = tileOutXBase; loopX < p.loopX & tileOutX < p.outW; loopX++, tileOutX += tileOutW)
|
158 |
-
{
|
159 |
-
// Load input pixels.
|
160 |
-
int tileMidX = tileOutX * downx + upx - 1 - p.padx0;
|
161 |
-
int tileMidY = tileOutY * downy + upy - 1 - p.pady0;
|
162 |
-
int tileInX = floorDiv(tileMidX, upx);
|
163 |
-
int tileInY = floorDiv(tileMidY, upy);
|
164 |
-
__syncthreads();
|
165 |
-
for (int inIdx = threadIdx.x; inIdx < tileInH * tileInW; inIdx += blockDim.x)
|
166 |
-
{
|
167 |
-
int relInY = inIdx / tileInW;
|
168 |
-
int relInX = inIdx - relInY * tileInW;
|
169 |
-
int inX = relInX + tileInX;
|
170 |
-
int inY = relInY + tileInY;
|
171 |
-
float v = 0.0f;
|
172 |
-
if (inX >= 0 & inY >= 0 & inX < p.inW & inY < p.inH)
|
173 |
-
v = (float)p.x[((majorIdx * p.inH + inY) * p.inW + inX) * p.minorDim + minorIdx];
|
174 |
-
sx[relInY][relInX] = v;
|
175 |
-
}
|
176 |
-
|
177 |
-
// Loop over output pixels.
|
178 |
-
__syncthreads();
|
179 |
-
for (int outIdx = threadIdx.x; outIdx < tileOutH * tileOutW; outIdx += blockDim.x)
|
180 |
-
{
|
181 |
-
int relOutY = outIdx / tileOutW;
|
182 |
-
int relOutX = outIdx - relOutY * tileOutW;
|
183 |
-
int outX = relOutX + tileOutX;
|
184 |
-
int outY = relOutY + tileOutY;
|
185 |
-
|
186 |
-
// Setup receptive field.
|
187 |
-
int midX = tileMidX + relOutX * downx;
|
188 |
-
int midY = tileMidY + relOutY * downy;
|
189 |
-
int inX = floorDiv(midX, upx);
|
190 |
-
int inY = floorDiv(midY, upy);
|
191 |
-
int relInX = inX - tileInX;
|
192 |
-
int relInY = inY - tileInY;
|
193 |
-
int kernelX = (inX + 1) * upx - midX - 1; // flipped
|
194 |
-
int kernelY = (inY + 1) * upy - midY - 1; // flipped
|
195 |
-
|
196 |
-
// Inner loop.
|
197 |
-
float v = 0.0f;
|
198 |
-
#pragma unroll
|
199 |
-
for (int y = 0; y < kernelH / upy; y++)
|
200 |
-
#pragma unroll
|
201 |
-
for (int x = 0; x < kernelW / upx; x++)
|
202 |
-
v += sx[relInY + y][relInX + x] * sk[kernelY + y * upy][kernelX + x * upx];
|
203 |
-
|
204 |
-
// Store result.
|
205 |
-
if (outX < p.outW & outY < p.outH)
|
206 |
-
p.y[((majorIdx * p.outH + outY) * p.outW + outX) * p.minorDim + minorIdx] = (T)v;
|
207 |
-
}
|
208 |
-
}
|
209 |
-
}
|
210 |
-
|
211 |
-
//------------------------------------------------------------------------
|
212 |
-
// TensorFlow op.
|
213 |
-
|
214 |
-
template <class T>
|
215 |
-
struct UpFirDn2DOp : public OpKernel
|
216 |
-
{
|
217 |
-
UpFirDn2DKernelParams<T> m_attribs;
|
218 |
-
|
219 |
-
UpFirDn2DOp(OpKernelConstruction* ctx) : OpKernel(ctx)
|
220 |
-
{
|
221 |
-
memset(&m_attribs, 0, sizeof(m_attribs));
|
222 |
-
OP_REQUIRES_OK(ctx, ctx->GetAttr("upx", &m_attribs.upx));
|
223 |
-
OP_REQUIRES_OK(ctx, ctx->GetAttr("upy", &m_attribs.upy));
|
224 |
-
OP_REQUIRES_OK(ctx, ctx->GetAttr("downx", &m_attribs.downx));
|
225 |
-
OP_REQUIRES_OK(ctx, ctx->GetAttr("downy", &m_attribs.downy));
|
226 |
-
OP_REQUIRES_OK(ctx, ctx->GetAttr("padx0", &m_attribs.padx0));
|
227 |
-
OP_REQUIRES_OK(ctx, ctx->GetAttr("padx1", &m_attribs.padx1));
|
228 |
-
OP_REQUIRES_OK(ctx, ctx->GetAttr("pady0", &m_attribs.pady0));
|
229 |
-
OP_REQUIRES_OK(ctx, ctx->GetAttr("pady1", &m_attribs.pady1));
|
230 |
-
OP_REQUIRES(ctx, m_attribs.upx >= 1 && m_attribs.upy >= 1, errors::InvalidArgument("upx and upy must be at least 1x1"));
|
231 |
-
OP_REQUIRES(ctx, m_attribs.downx >= 1 && m_attribs.downy >= 1, errors::InvalidArgument("downx and downy must be at least 1x1"));
|
232 |
-
}
|
233 |
-
|
234 |
-
void Compute(OpKernelContext* ctx)
|
235 |
-
{
|
236 |
-
UpFirDn2DKernelParams<T> p = m_attribs;
|
237 |
-
cudaStream_t stream = ctx->eigen_device<Eigen::GpuDevice>().stream();
|
238 |
-
|
239 |
-
const Tensor& x = ctx->input(0); // [majorDim, inH, inW, minorDim]
|
240 |
-
const Tensor& k = ctx->input(1); // [kernelH, kernelW]
|
241 |
-
p.x = x.flat<T>().data();
|
242 |
-
p.k = k.flat<T>().data();
|
243 |
-
OP_REQUIRES(ctx, x.dims() == 4, errors::InvalidArgument("input must have rank 4"));
|
244 |
-
OP_REQUIRES(ctx, k.dims() == 2, errors::InvalidArgument("kernel must have rank 2"));
|
245 |
-
OP_REQUIRES(ctx, x.NumElements() <= kint32max, errors::InvalidArgument("input too large"));
|
246 |
-
OP_REQUIRES(ctx, k.NumElements() <= kint32max, errors::InvalidArgument("kernel too large"));
|
247 |
-
|
248 |
-
p.majorDim = (int)x.dim_size(0);
|
249 |
-
p.inH = (int)x.dim_size(1);
|
250 |
-
p.inW = (int)x.dim_size(2);
|
251 |
-
p.minorDim = (int)x.dim_size(3);
|
252 |
-
p.kernelH = (int)k.dim_size(0);
|
253 |
-
p.kernelW = (int)k.dim_size(1);
|
254 |
-
OP_REQUIRES(ctx, p.kernelW >= 1 && p.kernelH >= 1, errors::InvalidArgument("kernel must be at least 1x1"));
|
255 |
-
|
256 |
-
p.outW = (p.inW * p.upx + p.padx0 + p.padx1 - p.kernelW + p.downx) / p.downx;
|
257 |
-
p.outH = (p.inH * p.upy + p.pady0 + p.pady1 - p.kernelH + p.downy) / p.downy;
|
258 |
-
OP_REQUIRES(ctx, p.outW >= 1 && p.outH >= 1, errors::InvalidArgument("output must be at least 1x1"));
|
259 |
-
|
260 |
-
Tensor* y = NULL; // [majorDim, outH, outW, minorDim]
|
261 |
-
TensorShape ys;
|
262 |
-
ys.AddDim(p.majorDim);
|
263 |
-
ys.AddDim(p.outH);
|
264 |
-
ys.AddDim(p.outW);
|
265 |
-
ys.AddDim(p.minorDim);
|
266 |
-
OP_REQUIRES_OK(ctx, ctx->allocate_output(0, ys, &y));
|
267 |
-
p.y = y->flat<T>().data();
|
268 |
-
OP_REQUIRES(ctx, y->NumElements() <= kint32max, errors::InvalidArgument("output too large"));
|
269 |
-
|
270 |
-
// Choose CUDA kernel to use.
|
271 |
-
void* cudaKernel = (void*)UpFirDn2DKernel_large<T>;
|
272 |
-
int tileOutW = -1;
|
273 |
-
int tileOutH = -1;
|
274 |
-
if (p.upx == 1 && p.upy == 1 && p.downx == 1 && p.downy == 1 && p.kernelW <= 7 && p.kernelH <= 7) { cudaKernel = (void*)UpFirDn2DKernel_small<T, 1,1, 1,1, 7,7, 64,16>; tileOutW = 64; tileOutH = 16; }
|
275 |
-
if (p.upx == 1 && p.upy == 1 && p.downx == 1 && p.downy == 1 && p.kernelW <= 6 && p.kernelH <= 6) { cudaKernel = (void*)UpFirDn2DKernel_small<T, 1,1, 1,1, 6,6, 64,16>; tileOutW = 64; tileOutH = 16; }
|
276 |
-
if (p.upx == 1 && p.upy == 1 && p.downx == 1 && p.downy == 1 && p.kernelW <= 5 && p.kernelH <= 5) { cudaKernel = (void*)UpFirDn2DKernel_small<T, 1,1, 1,1, 5,5, 64,16>; tileOutW = 64; tileOutH = 16; }
|
277 |
-
if (p.upx == 1 && p.upy == 1 && p.downx == 1 && p.downy == 1 && p.kernelW <= 4 && p.kernelH <= 4) { cudaKernel = (void*)UpFirDn2DKernel_small<T, 1,1, 1,1, 4,4, 64,16>; tileOutW = 64; tileOutH = 16; }
|
278 |
-
if (p.upx == 1 && p.upy == 1 && p.downx == 1 && p.downy == 1 && p.kernelW <= 3 && p.kernelH <= 3) { cudaKernel = (void*)UpFirDn2DKernel_small<T, 1,1, 1,1, 3,3, 64,16>; tileOutW = 64; tileOutH = 16; }
|
279 |
-
if (p.upx == 2 && p.upy == 2 && p.downx == 1 && p.downy == 1 && p.kernelW <= 8 && p.kernelH <= 8) { cudaKernel = (void*)UpFirDn2DKernel_small<T, 2,2, 1,1, 8,8, 64,16>; tileOutW = 64; tileOutH = 16; }
|
280 |
-
if (p.upx == 2 && p.upy == 2 && p.downx == 1 && p.downy == 1 && p.kernelW <= 6 && p.kernelH <= 6) { cudaKernel = (void*)UpFirDn2DKernel_small<T, 2,2, 1,1, 6,6, 64,16>; tileOutW = 64; tileOutH = 16; }
|
281 |
-
if (p.upx == 2 && p.upy == 2 && p.downx == 1 && p.downy == 1 && p.kernelW <= 4 && p.kernelH <= 4) { cudaKernel = (void*)UpFirDn2DKernel_small<T, 2,2, 1,1, 4,4, 64,16>; tileOutW = 64; tileOutH = 16; }
|
282 |
-
if (p.upx == 2 && p.upy == 2 && p.downx == 1 && p.downy == 1 && p.kernelW <= 2 && p.kernelH <= 2) { cudaKernel = (void*)UpFirDn2DKernel_small<T, 2,2, 1,1, 2,2, 64,16>; tileOutW = 64; tileOutH = 16; }
|
283 |
-
if (p.upx == 1 && p.upy == 1 && p.downx == 2 && p.downy == 2 && p.kernelW <= 8 && p.kernelH <= 8) { cudaKernel = (void*)UpFirDn2DKernel_small<T, 1,1, 2,2, 8,8, 32,8>; tileOutW = 32; tileOutH = 8; }
|
284 |
-
if (p.upx == 1 && p.upy == 1 && p.downx == 2 && p.downy == 2 && p.kernelW <= 6 && p.kernelH <= 6) { cudaKernel = (void*)UpFirDn2DKernel_small<T, 1,1, 2,2, 6,6, 32,8>; tileOutW = 32; tileOutH = 8; }
|
285 |
-
if (p.upx == 1 && p.upy == 1 && p.downx == 2 && p.downy == 2 && p.kernelW <= 4 && p.kernelH <= 4) { cudaKernel = (void*)UpFirDn2DKernel_small<T, 1,1, 2,2, 4,4, 32,8>; tileOutW = 32; tileOutH = 8; }
|
286 |
-
if (p.upx == 1 && p.upy == 1 && p.downx == 2 && p.downy == 2 && p.kernelW <= 2 && p.kernelH <= 2) { cudaKernel = (void*)UpFirDn2DKernel_small<T, 1,1, 2,2, 2,2, 32,8>; tileOutW = 32; tileOutH = 8; }
|
287 |
-
|
288 |
-
// Choose launch params.
|
289 |
-
dim3 blockSize;
|
290 |
-
dim3 gridSize;
|
291 |
-
if (tileOutW > 0 && tileOutH > 0) // small
|
292 |
-
{
|
293 |
-
p.loopMajor = (p.majorDim - 1) / 16384 + 1;
|
294 |
-
p.loopX = 1;
|
295 |
-
blockSize = dim3(32 * 8, 1, 1);
|
296 |
-
gridSize = dim3(((p.outH - 1) / tileOutH + 1) * p.minorDim, (p.outW - 1) / (p.loopX * tileOutW) + 1, (p.majorDim - 1) / p.loopMajor + 1);
|
297 |
-
}
|
298 |
-
else // large
|
299 |
-
{
|
300 |
-
p.loopMajor = (p.majorDim - 1) / 16384 + 1;
|
301 |
-
p.loopX = 4;
|
302 |
-
blockSize = dim3(4, 32, 1);
|
303 |
-
gridSize = dim3((p.outH * p.minorDim - 1) / blockSize.x + 1, (p.outW - 1) / (p.loopX * blockSize.y) + 1, (p.majorDim - 1) / p.loopMajor + 1);
|
304 |
-
}
|
305 |
-
|
306 |
-
// Launch CUDA kernel.
|
307 |
-
void* args[] = {&p};
|
308 |
-
OP_CHECK_CUDA_ERROR(ctx, cudaLaunchKernel(cudaKernel, gridSize, blockSize, args, 0, stream));
|
309 |
-
}
|
310 |
-
};
|
311 |
-
|
312 |
-
REGISTER_OP("UpFirDn2D")
|
313 |
-
.Input ("x: T")
|
314 |
-
.Input ("k: T")
|
315 |
-
.Output ("y: T")
|
316 |
-
.Attr ("T: {float, half}")
|
317 |
-
.Attr ("upx: int = 1")
|
318 |
-
.Attr ("upy: int = 1")
|
319 |
-
.Attr ("downx: int = 1")
|
320 |
-
.Attr ("downy: int = 1")
|
321 |
-
.Attr ("padx0: int = 0")
|
322 |
-
.Attr ("padx1: int = 0")
|
323 |
-
.Attr ("pady0: int = 0")
|
324 |
-
.Attr ("pady1: int = 0");
|
325 |
-
REGISTER_KERNEL_BUILDER(Name("UpFirDn2D").Device(DEVICE_GPU).TypeConstraint<float>("T"), UpFirDn2DOp<float>);
|
326 |
-
REGISTER_KERNEL_BUILDER(Name("UpFirDn2D").Device(DEVICE_GPU).TypeConstraint<Eigen::half>("T"), UpFirDn2DOp<Eigen::half>);
|
327 |
-
|
328 |
-
//------------------------------------------------------------------------
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
dnnlib/tflib/ops/upfirdn_2d.py
DELETED
@@ -1,366 +0,0 @@
|
|
1 |
-
# Copyright (c) SenseTime Research. All rights reserved.
|
2 |
-
|
3 |
-
# Copyright (c) 2019, NVIDIA Corporation. All rights reserved.
|
4 |
-
#
|
5 |
-
# This work is made available under the Nvidia Source Code License-NC.
|
6 |
-
# To view a copy of this license, visit
|
7 |
-
# https://nvlabs.github.io/stylegan2/license.html
|
8 |
-
|
9 |
-
"""Custom TensorFlow ops for efficient resampling of 2D images."""
|
10 |
-
|
11 |
-
import os
|
12 |
-
import numpy as np
|
13 |
-
import tensorflow as tf
|
14 |
-
from .. import custom_ops
|
15 |
-
|
16 |
-
def _get_plugin():
|
17 |
-
return custom_ops.get_plugin(os.path.splitext(__file__)[0] + '.cu')
|
18 |
-
|
19 |
-
#----------------------------------------------------------------------------
|
20 |
-
|
21 |
-
def upfirdn_2d(x, k, upx=1, upy=1, downx=1, downy=1, padx0=0, padx1=0, pady0=0, pady1=0, impl='cuda'):
|
22 |
-
r"""Pad, upsample, FIR filter, and downsample a batch of 2D images.
|
23 |
-
|
24 |
-
Accepts a batch of 2D images of the shape `[majorDim, inH, inW, minorDim]`
|
25 |
-
and performs the following operations for each image, batched across
|
26 |
-
`majorDim` and `minorDim`:
|
27 |
-
|
28 |
-
1. Pad the image with zeros by the specified number of pixels on each side
|
29 |
-
(`padx0`, `padx1`, `pady0`, `pady1`). Specifying a negative value
|
30 |
-
corresponds to cropping the image.
|
31 |
-
|
32 |
-
2. Upsample the image by inserting the zeros after each pixel (`upx`, `upy`).
|
33 |
-
|
34 |
-
3. Convolve the image with the specified 2D FIR filter (`k`), shrinking the
|
35 |
-
image so that the footprint of all output pixels lies within the input image.
|
36 |
-
|
37 |
-
4. Downsample the image by throwing away pixels (`downx`, `downy`).
|
38 |
-
|
39 |
-
This sequence of operations bears close resemblance to scipy.signal.upfirdn().
|
40 |
-
The fused op is considerably more efficient than performing the same calculation
|
41 |
-
using standard TensorFlow ops. It supports gradients of arbitrary order.
|
42 |
-
|
43 |
-
Args:
|
44 |
-
x: Input tensor of the shape `[majorDim, inH, inW, minorDim]`.
|
45 |
-
k: 2D FIR filter of the shape `[firH, firW]`.
|
46 |
-
upx: Integer upsampling factor along the X-axis (default: 1).
|
47 |
-
upy: Integer upsampling factor along the Y-axis (default: 1).
|
48 |
-
downx: Integer downsampling factor along the X-axis (default: 1).
|
49 |
-
downy: Integer downsampling factor along the Y-axis (default: 1).
|
50 |
-
padx0: Number of pixels to pad on the left side (default: 0).
|
51 |
-
padx1: Number of pixels to pad on the right side (default: 0).
|
52 |
-
pady0: Number of pixels to pad on the top side (default: 0).
|
53 |
-
pady1: Number of pixels to pad on the bottom side (default: 0).
|
54 |
-
impl: Name of the implementation to use. Can be `"ref"` or `"cuda"` (default).
|
55 |
-
|
56 |
-
Returns:
|
57 |
-
Tensor of the shape `[majorDim, outH, outW, minorDim]`, and same datatype as `x`.
|
58 |
-
"""
|
59 |
-
|
60 |
-
impl_dict = {
|
61 |
-
'ref': _upfirdn_2d_ref,
|
62 |
-
'cuda': _upfirdn_2d_cuda,
|
63 |
-
}
|
64 |
-
return impl_dict[impl](x=x, k=k, upx=upx, upy=upy, downx=downx, downy=downy, padx0=padx0, padx1=padx1, pady0=pady0, pady1=pady1)
|
65 |
-
|
66 |
-
#----------------------------------------------------------------------------
|
67 |
-
|
68 |
-
def _upfirdn_2d_ref(x, k, upx, upy, downx, downy, padx0, padx1, pady0, pady1):
|
69 |
-
"""Slow reference implementation of `upfirdn_2d()` using standard TensorFlow ops."""
|
70 |
-
|
71 |
-
x = tf.convert_to_tensor(x)
|
72 |
-
k = np.asarray(k, dtype=np.float32)
|
73 |
-
assert x.shape.rank == 4
|
74 |
-
inH = x.shape[1].value
|
75 |
-
inW = x.shape[2].value
|
76 |
-
minorDim = _shape(x, 3)
|
77 |
-
kernelH, kernelW = k.shape
|
78 |
-
assert inW >= 1 and inH >= 1
|
79 |
-
assert kernelW >= 1 and kernelH >= 1
|
80 |
-
assert isinstance(upx, int) and isinstance(upy, int)
|
81 |
-
assert isinstance(downx, int) and isinstance(downy, int)
|
82 |
-
assert isinstance(padx0, int) and isinstance(padx1, int)
|
83 |
-
assert isinstance(pady0, int) and isinstance(pady1, int)
|
84 |
-
|
85 |
-
# Upsample (insert zeros).
|
86 |
-
x = tf.reshape(x, [-1, inH, 1, inW, 1, minorDim])
|
87 |
-
x = tf.pad(x, [[0, 0], [0, 0], [0, upy - 1], [0, 0], [0, upx - 1], [0, 0]])
|
88 |
-
x = tf.reshape(x, [-1, inH * upy, inW * upx, minorDim])
|
89 |
-
|
90 |
-
# Pad (crop if negative).
|
91 |
-
x = tf.pad(x, [[0, 0], [max(pady0, 0), max(pady1, 0)], [max(padx0, 0), max(padx1, 0)], [0, 0]])
|
92 |
-
x = x[:, max(-pady0, 0) : x.shape[1].value - max(-pady1, 0), max(-padx0, 0) : x.shape[2].value - max(-padx1, 0), :]
|
93 |
-
|
94 |
-
# Convolve with filter.
|
95 |
-
x = tf.transpose(x, [0, 3, 1, 2])
|
96 |
-
x = tf.reshape(x, [-1, 1, inH * upy + pady0 + pady1, inW * upx + padx0 + padx1])
|
97 |
-
w = tf.constant(k[::-1, ::-1, np.newaxis, np.newaxis], dtype=x.dtype)
|
98 |
-
x = tf.nn.conv2d(x, w, strides=[1,1,1,1], padding='VALID', data_format='NCHW')
|
99 |
-
x = tf.reshape(x, [-1, minorDim, inH * upy + pady0 + pady1 - kernelH + 1, inW * upx + padx0 + padx1 - kernelW + 1])
|
100 |
-
x = tf.transpose(x, [0, 2, 3, 1])
|
101 |
-
|
102 |
-
# Downsample (throw away pixels).
|
103 |
-
return x[:, ::downy, ::downx, :]
|
104 |
-
|
105 |
-
#----------------------------------------------------------------------------
|
106 |
-
|
107 |
-
def _upfirdn_2d_cuda(x, k, upx, upy, downx, downy, padx0, padx1, pady0, pady1):
|
108 |
-
"""Fast CUDA implementation of `upfirdn_2d()` using custom ops."""
|
109 |
-
|
110 |
-
x = tf.convert_to_tensor(x)
|
111 |
-
k = np.asarray(k, dtype=np.float32)
|
112 |
-
majorDim, inH, inW, minorDim = x.shape.as_list()
|
113 |
-
kernelH, kernelW = k.shape
|
114 |
-
assert inW >= 1 and inH >= 1
|
115 |
-
assert kernelW >= 1 and kernelH >= 1
|
116 |
-
assert isinstance(upx, int) and isinstance(upy, int)
|
117 |
-
assert isinstance(downx, int) and isinstance(downy, int)
|
118 |
-
assert isinstance(padx0, int) and isinstance(padx1, int)
|
119 |
-
assert isinstance(pady0, int) and isinstance(pady1, int)
|
120 |
-
|
121 |
-
outW = (inW * upx + padx0 + padx1 - kernelW) // downx + 1
|
122 |
-
outH = (inH * upy + pady0 + pady1 - kernelH) // downy + 1
|
123 |
-
assert outW >= 1 and outH >= 1
|
124 |
-
|
125 |
-
kc = tf.constant(k, dtype=x.dtype)
|
126 |
-
gkc = tf.constant(k[::-1, ::-1], dtype=x.dtype)
|
127 |
-
gpadx0 = kernelW - padx0 - 1
|
128 |
-
gpady0 = kernelH - pady0 - 1
|
129 |
-
gpadx1 = inW * upx - outW * downx + padx0 - upx + 1
|
130 |
-
gpady1 = inH * upy - outH * downy + pady0 - upy + 1
|
131 |
-
|
132 |
-
@tf.custom_gradient
|
133 |
-
def func(x):
|
134 |
-
y = _get_plugin().up_fir_dn2d(x=x, k=kc, upx=upx, upy=upy, downx=downx, downy=downy, padx0=padx0, padx1=padx1, pady0=pady0, pady1=pady1)
|
135 |
-
y.set_shape([majorDim, outH, outW, minorDim])
|
136 |
-
@tf.custom_gradient
|
137 |
-
def grad(dy):
|
138 |
-
dx = _get_plugin().up_fir_dn2d(x=dy, k=gkc, upx=downx, upy=downy, downx=upx, downy=upy, padx0=gpadx0, padx1=gpadx1, pady0=gpady0, pady1=gpady1)
|
139 |
-
dx.set_shape([majorDim, inH, inW, minorDim])
|
140 |
-
return dx, func
|
141 |
-
return y, grad
|
142 |
-
return func(x)
|
143 |
-
|
144 |
-
#----------------------------------------------------------------------------
|
145 |
-
|
146 |
-
def filter_2d(x, k, gain=1, data_format='NCHW', impl='cuda'):
|
147 |
-
r"""Filter a batch of 2D images with the given FIR filter.
|
148 |
-
|
149 |
-
Accepts a batch of 2D images of the shape `[N, C, H, W]` or `[N, H, W, C]`
|
150 |
-
and filters each image with the given filter. The filter is normalized so that
|
151 |
-
if the input pixels are constant, they will be scaled by the specified `gain`.
|
152 |
-
Pixels outside the image are assumed to be zero.
|
153 |
-
|
154 |
-
Args:
|
155 |
-
x: Input tensor of the shape `[N, C, H, W]` or `[N, H, W, C]`.
|
156 |
-
k: FIR filter of the shape `[firH, firW]` or `[firN]` (separable).
|
157 |
-
gain: Scaling factor for signal magnitude (default: 1.0).
|
158 |
-
data_format: `'NCHW'` or `'NHWC'` (default: `'NCHW'`).
|
159 |
-
impl: Name of the implementation to use. Can be `"ref"` or `"cuda"` (default).
|
160 |
-
|
161 |
-
Returns:
|
162 |
-
Tensor of the same shape and datatype as `x`.
|
163 |
-
"""
|
164 |
-
|
165 |
-
k = _setup_kernel(k) * gain
|
166 |
-
p = k.shape[0] - 1
|
167 |
-
return _simple_upfirdn_2d(x, k, pad0=(p+1)//2, pad1=p//2, data_format=data_format, impl=impl)
|
168 |
-
|
169 |
-
#----------------------------------------------------------------------------
|
170 |
-
|
171 |
-
def upsample_2d(x, k=None, factor=2, gain=1, data_format='NCHW', impl='cuda'):
|
172 |
-
r"""Upsample a batch of 2D images with the given filter.
|
173 |
-
|
174 |
-
Accepts a batch of 2D images of the shape `[N, C, H, W]` or `[N, H, W, C]`
|
175 |
-
and upsamples each image with the given filter. The filter is normalized so that
|
176 |
-
if the input pixels are constant, they will be scaled by the specified `gain`.
|
177 |
-
Pixels outside the image are assumed to be zero, and the filter is padded with
|
178 |
-
zeros so that its shape is a multiple of the upsampling factor.
|
179 |
-
|
180 |
-
Args:
|
181 |
-
x: Input tensor of the shape `[N, C, H, W]` or `[N, H, W, C]`.
|
182 |
-
k: FIR filter of the shape `[firH, firW]` or `[firN]` (separable).
|
183 |
-
The default is `[1] * factor`, which corresponds to nearest-neighbor
|
184 |
-
upsampling.
|
185 |
-
factor: Integer upsampling factor (default: 2).
|
186 |
-
gain: Scaling factor for signal magnitude (default: 1.0).
|
187 |
-
data_format: `'NCHW'` or `'NHWC'` (default: `'NCHW'`).
|
188 |
-
impl: Name of the implementation to use. Can be `"ref"` or `"cuda"` (default).
|
189 |
-
|
190 |
-
Returns:
|
191 |
-
Tensor of the shape `[N, C, H * factor, W * factor]` or
|
192 |
-
`[N, H * factor, W * factor, C]`, and same datatype as `x`.
|
193 |
-
"""
|
194 |
-
|
195 |
-
assert isinstance(factor, int) and factor >= 1
|
196 |
-
if k is None:
|
197 |
-
k = [1] * factor
|
198 |
-
k = _setup_kernel(k) * (gain * (factor ** 2))
|
199 |
-
p = k.shape[0] - factor
|
200 |
-
return _simple_upfirdn_2d(x, k, up=factor, pad0=(p+1)//2+factor-1, pad1=p//2, data_format=data_format, impl=impl)
|
201 |
-
|
202 |
-
#----------------------------------------------------------------------------
|
203 |
-
|
204 |
-
def downsample_2d(x, k=None, factor=2, gain=1, data_format='NCHW', impl='cuda'):
|
205 |
-
r"""Downsample a batch of 2D images with the given filter.
|
206 |
-
|
207 |
-
Accepts a batch of 2D images of the shape `[N, C, H, W]` or `[N, H, W, C]`
|
208 |
-
and downsamples each image with the given filter. The filter is normalized so that
|
209 |
-
if the input pixels are constant, they will be scaled by the specified `gain`.
|
210 |
-
Pixels outside the image are assumed to be zero, and the filter is padded with
|
211 |
-
zeros so that its shape is a multiple of the downsampling factor.
|
212 |
-
|
213 |
-
Args:
|
214 |
-
x: Input tensor of the shape `[N, C, H, W]` or `[N, H, W, C]`.
|
215 |
-
k: FIR filter of the shape `[firH, firW]` or `[firN]` (separable).
|
216 |
-
The default is `[1] * factor`, which corresponds to average pooling.
|
217 |
-
factor: Integer downsampling factor (default: 2).
|
218 |
-
gain: Scaling factor for signal magnitude (default: 1.0).
|
219 |
-
data_format: `'NCHW'` or `'NHWC'` (default: `'NCHW'`).
|
220 |
-
impl: Name of the implementation to use. Can be `"ref"` or `"cuda"` (default).
|
221 |
-
|
222 |
-
Returns:
|
223 |
-
Tensor of the shape `[N, C, H // factor, W // factor]` or
|
224 |
-
`[N, H // factor, W // factor, C]`, and same datatype as `x`.
|
225 |
-
"""
|
226 |
-
|
227 |
-
assert isinstance(factor, int) and factor >= 1
|
228 |
-
if k is None:
|
229 |
-
k = [1] * factor
|
230 |
-
k = _setup_kernel(k) * gain
|
231 |
-
p = k.shape[0] - factor
|
232 |
-
return _simple_upfirdn_2d(x, k, down=factor, pad0=(p+1)//2, pad1=p//2, data_format=data_format, impl=impl)
|
233 |
-
|
234 |
-
#----------------------------------------------------------------------------
|
235 |
-
|
236 |
-
def upsample_conv_2d(x, w, k=None, factor=2, gain=1, data_format='NCHW', impl='cuda'):
|
237 |
-
r"""Fused `upsample_2d()` followed by `tf.nn.conv2d()`.
|
238 |
-
|
239 |
-
Padding is performed only once at the beginning, not between the operations.
|
240 |
-
The fused op is considerably more efficient than performing the same calculation
|
241 |
-
using standard TensorFlow ops. It supports gradients of arbitrary order.
|
242 |
-
|
243 |
-
Args:
|
244 |
-
x: Input tensor of the shape `[N, C, H, W]` or `[N, H, W, C]`.
|
245 |
-
w: Weight tensor of the shape `[filterH, filterW, inChannels, outChannels]`.
|
246 |
-
Grouped convolution can be performed by `inChannels = x.shape[0] // numGroups`.
|
247 |
-
k: FIR filter of the shape `[firH, firW]` or `[firN]` (separable).
|
248 |
-
The default is `[1] * factor`, which corresponds to nearest-neighbor
|
249 |
-
upsampling.
|
250 |
-
factor: Integer upsampling factor (default: 2).
|
251 |
-
gain: Scaling factor for signal magnitude (default: 1.0).
|
252 |
-
data_format: `'NCHW'` or `'NHWC'` (default: `'NCHW'`).
|
253 |
-
impl: Name of the implementation to use. Can be `"ref"` or `"cuda"` (default).
|
254 |
-
|
255 |
-
Returns:
|
256 |
-
Tensor of the shape `[N, C, H * factor, W * factor]` or
|
257 |
-
`[N, H * factor, W * factor, C]`, and same datatype as `x`.
|
258 |
-
"""
|
259 |
-
|
260 |
-
assert isinstance(factor, int) and factor >= 1
|
261 |
-
|
262 |
-
# Check weight shape.
|
263 |
-
w = tf.convert_to_tensor(w)
|
264 |
-
assert w.shape.rank == 4
|
265 |
-
convH = w.shape[0].value
|
266 |
-
convW = w.shape[1].value
|
267 |
-
inC = _shape(w, 2)
|
268 |
-
outC = _shape(w, 3)
|
269 |
-
assert convW == convH
|
270 |
-
|
271 |
-
# Setup filter kernel.
|
272 |
-
if k is None:
|
273 |
-
k = [1] * factor
|
274 |
-
k = _setup_kernel(k) * (gain * (factor ** 2))
|
275 |
-
p = (k.shape[0] - factor) - (convW - 1)
|
276 |
-
|
277 |
-
# Determine data dimensions.
|
278 |
-
if data_format == 'NCHW':
|
279 |
-
stride = [1, 1, factor, factor]
|
280 |
-
output_shape = [_shape(x, 0), outC, (_shape(x, 2) - 1) * factor + convH, (_shape(x, 3) - 1) * factor + convW]
|
281 |
-
num_groups = _shape(x, 1) // inC
|
282 |
-
else:
|
283 |
-
stride = [1, factor, factor, 1]
|
284 |
-
output_shape = [_shape(x, 0), (_shape(x, 1) - 1) * factor + convH, (_shape(x, 2) - 1) * factor + convW, outC]
|
285 |
-
num_groups = _shape(x, 3) // inC
|
286 |
-
|
287 |
-
# Transpose weights.
|
288 |
-
w = tf.reshape(w, [convH, convW, inC, num_groups, -1])
|
289 |
-
w = tf.transpose(w[::-1, ::-1], [0, 1, 4, 3, 2])
|
290 |
-
w = tf.reshape(w, [convH, convW, -1, num_groups * inC])
|
291 |
-
|
292 |
-
# Execute.
|
293 |
-
x = tf.nn.conv2d_transpose(x, w, output_shape=output_shape, strides=stride, padding='VALID', data_format=data_format)
|
294 |
-
return _simple_upfirdn_2d(x, k, pad0=(p+1)//2+factor-1, pad1=p//2+1, data_format=data_format, impl=impl)
|
295 |
-
|
296 |
-
#----------------------------------------------------------------------------
|
297 |
-
|
298 |
-
def conv_downsample_2d(x, w, k=None, factor=2, gain=1, data_format='NCHW', impl='cuda'):
|
299 |
-
r"""Fused `tf.nn.conv2d()` followed by `downsample_2d()`.
|
300 |
-
|
301 |
-
Padding is performed only once at the beginning, not between the operations.
|
302 |
-
The fused op is considerably more efficient than performing the same calculation
|
303 |
-
using standard TensorFlow ops. It supports gradients of arbitrary order.
|
304 |
-
|
305 |
-
Args:
|
306 |
-
x: Input tensor of the shape `[N, C, H, W]` or `[N, H, W, C]`.
|
307 |
-
w: Weight tensor of the shape `[filterH, filterW, inChannels, outChannels]`.
|
308 |
-
Grouped convolution can be performed by `inChannels = x.shape[0] // numGroups`.
|
309 |
-
k: FIR filter of the shape `[firH, firW]` or `[firN]` (separable).
|
310 |
-
The default is `[1] * factor`, which corresponds to average pooling.
|
311 |
-
factor: Integer downsampling factor (default: 2).
|
312 |
-
gain: Scaling factor for signal magnitude (default: 1.0).
|
313 |
-
data_format: `'NCHW'` or `'NHWC'` (default: `'NCHW'`).
|
314 |
-
impl: Name of the implementation to use. Can be `"ref"` or `"cuda"` (default).
|
315 |
-
|
316 |
-
Returns:
|
317 |
-
Tensor of the shape `[N, C, H // factor, W // factor]` or
|
318 |
-
`[N, H // factor, W // factor, C]`, and same datatype as `x`.
|
319 |
-
"""
|
320 |
-
|
321 |
-
assert isinstance(factor, int) and factor >= 1
|
322 |
-
w = tf.convert_to_tensor(w)
|
323 |
-
convH, convW, _inC, _outC = w.shape.as_list()
|
324 |
-
assert convW == convH
|
325 |
-
if k is None:
|
326 |
-
k = [1] * factor
|
327 |
-
k = _setup_kernel(k) * gain
|
328 |
-
p = (k.shape[0] - factor) + (convW - 1)
|
329 |
-
if data_format == 'NCHW':
|
330 |
-
s = [1, 1, factor, factor]
|
331 |
-
else:
|
332 |
-
s = [1, factor, factor, 1]
|
333 |
-
x = _simple_upfirdn_2d(x, k, pad0=(p+1)//2, pad1=p//2, data_format=data_format, impl=impl)
|
334 |
-
return tf.nn.conv2d(x, w, strides=s, padding='VALID', data_format=data_format)
|
335 |
-
|
336 |
-
#----------------------------------------------------------------------------
|
337 |
-
# Internal helper funcs.
|
338 |
-
|
339 |
-
def _shape(tf_expr, dim_idx):
|
340 |
-
if tf_expr.shape.rank is not None:
|
341 |
-
dim = tf_expr.shape[dim_idx].value
|
342 |
-
if dim is not None:
|
343 |
-
return dim
|
344 |
-
return tf.shape(tf_expr)[dim_idx]
|
345 |
-
|
346 |
-
def _setup_kernel(k):
|
347 |
-
k = np.asarray(k, dtype=np.float32)
|
348 |
-
if k.ndim == 1:
|
349 |
-
k = np.outer(k, k)
|
350 |
-
k /= np.sum(k)
|
351 |
-
assert k.ndim == 2
|
352 |
-
assert k.shape[0] == k.shape[1]
|
353 |
-
return k
|
354 |
-
|
355 |
-
def _simple_upfirdn_2d(x, k, up=1, down=1, pad0=0, pad1=0, data_format='NCHW', impl='cuda'):
|
356 |
-
assert data_format in ['NCHW', 'NHWC']
|
357 |
-
assert x.shape.rank == 4
|
358 |
-
y = x
|
359 |
-
if data_format == 'NCHW':
|
360 |
-
y = tf.reshape(y, [-1, _shape(y, 2), _shape(y, 3), 1])
|
361 |
-
y = upfirdn_2d(y, k, upx=up, upy=up, downx=down, downy=down, padx0=pad0, padx1=pad1, pady0=pad0, pady1=pad1, impl=impl)
|
362 |
-
if data_format == 'NCHW':
|
363 |
-
y = tf.reshape(y, [-1, _shape(x, 1), _shape(y, 1), _shape(y, 2)])
|
364 |
-
return y
|
365 |
-
|
366 |
-
#----------------------------------------------------------------------------
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
dnnlib/tflib/optimizer.py
DELETED
@@ -1,338 +0,0 @@
|
|
1 |
-
# Copyright (c) SenseTime Research. All rights reserved.
|
2 |
-
|
3 |
-
# Copyright (c) 2019, NVIDIA Corporation. All rights reserved.
|
4 |
-
#
|
5 |
-
# This work is made available under the Nvidia Source Code License-NC.
|
6 |
-
# To view a copy of this license, visit
|
7 |
-
# https://nvlabs.github.io/stylegan2/license.html
|
8 |
-
|
9 |
-
"""Helper wrapper for a Tensorflow optimizer."""
|
10 |
-
|
11 |
-
import numpy as np
|
12 |
-
import tensorflow as tf
|
13 |
-
|
14 |
-
from collections import OrderedDict
|
15 |
-
from typing import List, Union
|
16 |
-
|
17 |
-
from . import autosummary
|
18 |
-
from . import tfutil
|
19 |
-
from .. import util
|
20 |
-
|
21 |
-
from .tfutil import TfExpression, TfExpressionEx
|
22 |
-
|
23 |
-
try:
|
24 |
-
# TensorFlow 1.13
|
25 |
-
from tensorflow.python.ops import nccl_ops
|
26 |
-
except:
|
27 |
-
# Older TensorFlow versions
|
28 |
-
import tensorflow.contrib.nccl as nccl_ops
|
29 |
-
|
30 |
-
class Optimizer:
|
31 |
-
"""A Wrapper for tf.train.Optimizer.
|
32 |
-
|
33 |
-
Automatically takes care of:
|
34 |
-
- Gradient averaging for multi-GPU training.
|
35 |
-
- Gradient accumulation for arbitrarily large minibatches.
|
36 |
-
- Dynamic loss scaling and typecasts for FP16 training.
|
37 |
-
- Ignoring corrupted gradients that contain NaNs/Infs.
|
38 |
-
- Reporting statistics.
|
39 |
-
- Well-chosen default settings.
|
40 |
-
"""
|
41 |
-
|
42 |
-
def __init__(self,
|
43 |
-
name: str = "Train", # Name string that will appear in TensorFlow graph.
|
44 |
-
tf_optimizer: str = "tf.train.AdamOptimizer", # Underlying optimizer class.
|
45 |
-
learning_rate: TfExpressionEx = 0.001, # Learning rate. Can vary over time.
|
46 |
-
minibatch_multiplier: TfExpressionEx = None, # Treat N consecutive minibatches as one by accumulating gradients.
|
47 |
-
share: "Optimizer" = None, # Share internal state with a previously created optimizer?
|
48 |
-
use_loss_scaling: bool = False, # Enable dynamic loss scaling for robust mixed-precision training?
|
49 |
-
loss_scaling_init: float = 64.0, # Log2 of initial loss scaling factor.
|
50 |
-
loss_scaling_inc: float = 0.0005, # Log2 of per-minibatch loss scaling increment when there is no overflow.
|
51 |
-
loss_scaling_dec: float = 1.0, # Log2 of per-minibatch loss scaling decrement when there is an overflow.
|
52 |
-
report_mem_usage: bool = False, # Report fine-grained memory usage statistics in TensorBoard?
|
53 |
-
**kwargs):
|
54 |
-
|
55 |
-
# Public fields.
|
56 |
-
self.name = name
|
57 |
-
self.learning_rate = learning_rate
|
58 |
-
self.minibatch_multiplier = minibatch_multiplier
|
59 |
-
self.id = self.name.replace("/", ".")
|
60 |
-
self.scope = tf.get_default_graph().unique_name(self.id)
|
61 |
-
self.optimizer_class = util.get_obj_by_name(tf_optimizer)
|
62 |
-
self.optimizer_kwargs = dict(kwargs)
|
63 |
-
self.use_loss_scaling = use_loss_scaling
|
64 |
-
self.loss_scaling_init = loss_scaling_init
|
65 |
-
self.loss_scaling_inc = loss_scaling_inc
|
66 |
-
self.loss_scaling_dec = loss_scaling_dec
|
67 |
-
|
68 |
-
# Private fields.
|
69 |
-
self._updates_applied = False
|
70 |
-
self._devices = OrderedDict() # device_name => EasyDict()
|
71 |
-
self._shared_optimizers = OrderedDict() # device_name => optimizer_class
|
72 |
-
self._gradient_shapes = None # [shape, ...]
|
73 |
-
self._report_mem_usage = report_mem_usage
|
74 |
-
|
75 |
-
# Validate arguments.
|
76 |
-
assert callable(self.optimizer_class)
|
77 |
-
|
78 |
-
# Share internal state if requested.
|
79 |
-
if share is not None:
|
80 |
-
assert isinstance(share, Optimizer)
|
81 |
-
assert self.optimizer_class is share.optimizer_class
|
82 |
-
assert self.learning_rate is share.learning_rate
|
83 |
-
assert self.optimizer_kwargs == share.optimizer_kwargs
|
84 |
-
self._shared_optimizers = share._shared_optimizers # pylint: disable=protected-access
|
85 |
-
|
86 |
-
def _get_device(self, device_name: str):
|
87 |
-
"""Get internal state for the given TensorFlow device."""
|
88 |
-
tfutil.assert_tf_initialized()
|
89 |
-
if device_name in self._devices:
|
90 |
-
return self._devices[device_name]
|
91 |
-
|
92 |
-
# Initialize fields.
|
93 |
-
device = util.EasyDict()
|
94 |
-
device.name = device_name
|
95 |
-
device.optimizer = None # Underlying optimizer: optimizer_class
|
96 |
-
device.loss_scaling_var = None # Log2 of loss scaling: tf.Variable
|
97 |
-
device.grad_raw = OrderedDict() # Raw gradients: var => [grad, ...]
|
98 |
-
device.grad_clean = OrderedDict() # Clean gradients: var => grad
|
99 |
-
device.grad_acc_vars = OrderedDict() # Accumulation sums: var => tf.Variable
|
100 |
-
device.grad_acc_count = None # Accumulation counter: tf.Variable
|
101 |
-
device.grad_acc = OrderedDict() # Accumulated gradients: var => grad
|
102 |
-
|
103 |
-
# Setup TensorFlow objects.
|
104 |
-
with tfutil.absolute_name_scope(self.scope + "/Devices"), tf.device(device_name), tf.control_dependencies(None):
|
105 |
-
if device_name not in self._shared_optimizers:
|
106 |
-
optimizer_name = self.scope.replace("/", "_") + "_opt%d" % len(self._shared_optimizers)
|
107 |
-
self._shared_optimizers[device_name] = self.optimizer_class(name=optimizer_name, learning_rate=self.learning_rate, **self.optimizer_kwargs)
|
108 |
-
device.optimizer = self._shared_optimizers[device_name]
|
109 |
-
if self.use_loss_scaling:
|
110 |
-
device.loss_scaling_var = tf.Variable(np.float32(self.loss_scaling_init), trainable=False, name="loss_scaling_var")
|
111 |
-
|
112 |
-
# Register device.
|
113 |
-
self._devices[device_name] = device
|
114 |
-
return device
|
115 |
-
|
116 |
-
def register_gradients(self, loss: TfExpression, trainable_vars: Union[List, dict]) -> None:
|
117 |
-
"""Register the gradients of the given loss function with respect to the given variables.
|
118 |
-
Intended to be called once per GPU."""
|
119 |
-
tfutil.assert_tf_initialized()
|
120 |
-
assert not self._updates_applied
|
121 |
-
device = self._get_device(loss.device)
|
122 |
-
|
123 |
-
# Validate trainables.
|
124 |
-
if isinstance(trainable_vars, dict):
|
125 |
-
trainable_vars = list(trainable_vars.values()) # allow passing in Network.trainables as vars
|
126 |
-
assert isinstance(trainable_vars, list) and len(trainable_vars) >= 1
|
127 |
-
assert all(tfutil.is_tf_expression(expr) for expr in trainable_vars + [loss])
|
128 |
-
assert all(var.device == device.name for var in trainable_vars)
|
129 |
-
|
130 |
-
# Validate shapes.
|
131 |
-
if self._gradient_shapes is None:
|
132 |
-
self._gradient_shapes = [var.shape.as_list() for var in trainable_vars]
|
133 |
-
assert len(trainable_vars) == len(self._gradient_shapes)
|
134 |
-
assert all(var.shape.as_list() == var_shape for var, var_shape in zip(trainable_vars, self._gradient_shapes))
|
135 |
-
|
136 |
-
# Report memory usage if requested.
|
137 |
-
deps = []
|
138 |
-
if self._report_mem_usage:
|
139 |
-
self._report_mem_usage = False
|
140 |
-
try:
|
141 |
-
with tf.name_scope(self.id + '_mem'), tf.device(device.name), tf.control_dependencies([loss]):
|
142 |
-
deps.append(autosummary.autosummary(self.id + "/mem_usage_gb", tf.contrib.memory_stats.BytesInUse() / 2**30))
|
143 |
-
except tf.errors.NotFoundError:
|
144 |
-
pass
|
145 |
-
|
146 |
-
# Compute gradients.
|
147 |
-
with tf.name_scope(self.id + "_grad"), tf.device(device.name), tf.control_dependencies(deps):
|
148 |
-
loss = self.apply_loss_scaling(tf.cast(loss, tf.float32))
|
149 |
-
gate = tf.train.Optimizer.GATE_NONE # disable gating to reduce memory usage
|
150 |
-
grad_list = device.optimizer.compute_gradients(loss=loss, var_list=trainable_vars, gate_gradients=gate)
|
151 |
-
|
152 |
-
# Register gradients.
|
153 |
-
for grad, var in grad_list:
|
154 |
-
if var not in device.grad_raw:
|
155 |
-
device.grad_raw[var] = []
|
156 |
-
device.grad_raw[var].append(grad)
|
157 |
-
|
158 |
-
def apply_updates(self, allow_no_op: bool = False) -> tf.Operation:
|
159 |
-
"""Construct training op to update the registered variables based on their gradients."""
|
160 |
-
tfutil.assert_tf_initialized()
|
161 |
-
assert not self._updates_applied
|
162 |
-
self._updates_applied = True
|
163 |
-
all_ops = []
|
164 |
-
|
165 |
-
# Check for no-op.
|
166 |
-
if allow_no_op and len(self._devices) == 0:
|
167 |
-
with tfutil.absolute_name_scope(self.scope):
|
168 |
-
return tf.no_op(name='TrainingOp')
|
169 |
-
|
170 |
-
# Clean up gradients.
|
171 |
-
for device_idx, device in enumerate(self._devices.values()):
|
172 |
-
with tfutil.absolute_name_scope(self.scope + "/Clean%d" % device_idx), tf.device(device.name):
|
173 |
-
for var, grad in device.grad_raw.items():
|
174 |
-
|
175 |
-
# Filter out disconnected gradients and convert to float32.
|
176 |
-
grad = [g for g in grad if g is not None]
|
177 |
-
grad = [tf.cast(g, tf.float32) for g in grad]
|
178 |
-
|
179 |
-
# Sum within the device.
|
180 |
-
if len(grad) == 0:
|
181 |
-
grad = tf.zeros(var.shape) # No gradients => zero.
|
182 |
-
elif len(grad) == 1:
|
183 |
-
grad = grad[0] # Single gradient => use as is.
|
184 |
-
else:
|
185 |
-
grad = tf.add_n(grad) # Multiple gradients => sum.
|
186 |
-
|
187 |
-
# Scale as needed.
|
188 |
-
scale = 1.0 / len(device.grad_raw[var]) / len(self._devices)
|
189 |
-
scale = tf.constant(scale, dtype=tf.float32, name="scale")
|
190 |
-
if self.minibatch_multiplier is not None:
|
191 |
-
scale /= tf.cast(self.minibatch_multiplier, tf.float32)
|
192 |
-
scale = self.undo_loss_scaling(scale)
|
193 |
-
device.grad_clean[var] = grad * scale
|
194 |
-
|
195 |
-
# Sum gradients across devices.
|
196 |
-
if len(self._devices) > 1:
|
197 |
-
with tfutil.absolute_name_scope(self.scope + "/Broadcast"), tf.device(None):
|
198 |
-
for all_vars in zip(*[device.grad_clean.keys() for device in self._devices.values()]):
|
199 |
-
if len(all_vars) > 0 and all(dim > 0 for dim in all_vars[0].shape.as_list()): # NCCL does not support zero-sized tensors.
|
200 |
-
all_grads = [device.grad_clean[var] for device, var in zip(self._devices.values(), all_vars)]
|
201 |
-
all_grads = nccl_ops.all_sum(all_grads)
|
202 |
-
for device, var, grad in zip(self._devices.values(), all_vars, all_grads):
|
203 |
-
device.grad_clean[var] = grad
|
204 |
-
|
205 |
-
# Apply updates separately on each device.
|
206 |
-
for device_idx, device in enumerate(self._devices.values()):
|
207 |
-
with tfutil.absolute_name_scope(self.scope + "/Apply%d" % device_idx), tf.device(device.name):
|
208 |
-
# pylint: disable=cell-var-from-loop
|
209 |
-
|
210 |
-
# Accumulate gradients over time.
|
211 |
-
if self.minibatch_multiplier is None:
|
212 |
-
acc_ok = tf.constant(True, name='acc_ok')
|
213 |
-
device.grad_acc = OrderedDict(device.grad_clean)
|
214 |
-
else:
|
215 |
-
# Create variables.
|
216 |
-
with tf.control_dependencies(None):
|
217 |
-
for var in device.grad_clean.keys():
|
218 |
-
device.grad_acc_vars[var] = tf.Variable(tf.zeros(var.shape), trainable=False, name="grad_acc_var")
|
219 |
-
device.grad_acc_count = tf.Variable(tf.zeros([]), trainable=False, name="grad_acc_count")
|
220 |
-
|
221 |
-
# Track counter.
|
222 |
-
count_cur = device.grad_acc_count + 1.0
|
223 |
-
count_inc_op = lambda: tf.assign(device.grad_acc_count, count_cur)
|
224 |
-
count_reset_op = lambda: tf.assign(device.grad_acc_count, tf.zeros([]))
|
225 |
-
acc_ok = (count_cur >= tf.cast(self.minibatch_multiplier, tf.float32))
|
226 |
-
all_ops.append(tf.cond(acc_ok, count_reset_op, count_inc_op))
|
227 |
-
|
228 |
-
# Track gradients.
|
229 |
-
for var, grad in device.grad_clean.items():
|
230 |
-
acc_var = device.grad_acc_vars[var]
|
231 |
-
acc_cur = acc_var + grad
|
232 |
-
device.grad_acc[var] = acc_cur
|
233 |
-
with tf.control_dependencies([acc_cur]):
|
234 |
-
acc_inc_op = lambda: tf.assign(acc_var, acc_cur)
|
235 |
-
acc_reset_op = lambda: tf.assign(acc_var, tf.zeros(var.shape))
|
236 |
-
all_ops.append(tf.cond(acc_ok, acc_reset_op, acc_inc_op))
|
237 |
-
|
238 |
-
# No overflow => apply gradients.
|
239 |
-
all_ok = tf.reduce_all(tf.stack([acc_ok] + [tf.reduce_all(tf.is_finite(g)) for g in device.grad_acc.values()]))
|
240 |
-
apply_op = lambda: device.optimizer.apply_gradients([(tf.cast(grad, var.dtype), var) for var, grad in device.grad_acc.items()])
|
241 |
-
all_ops.append(tf.cond(all_ok, apply_op, tf.no_op))
|
242 |
-
|
243 |
-
# Adjust loss scaling.
|
244 |
-
if self.use_loss_scaling:
|
245 |
-
ls_inc_op = lambda: tf.assign_add(device.loss_scaling_var, self.loss_scaling_inc)
|
246 |
-
ls_dec_op = lambda: tf.assign_sub(device.loss_scaling_var, self.loss_scaling_dec)
|
247 |
-
ls_update_op = lambda: tf.group(tf.cond(all_ok, ls_inc_op, ls_dec_op))
|
248 |
-
all_ops.append(tf.cond(acc_ok, ls_update_op, tf.no_op))
|
249 |
-
|
250 |
-
# Last device => report statistics.
|
251 |
-
if device_idx == len(self._devices) - 1:
|
252 |
-
all_ops.append(autosummary.autosummary(self.id + "/learning_rate", self.learning_rate))
|
253 |
-
all_ops.append(autosummary.autosummary(self.id + "/overflow_frequency", tf.where(all_ok, 0, 1), condition=acc_ok))
|
254 |
-
if self.use_loss_scaling:
|
255 |
-
all_ops.append(autosummary.autosummary(self.id + "/loss_scaling_log2", device.loss_scaling_var))
|
256 |
-
|
257 |
-
# Initialize variables.
|
258 |
-
self.reset_optimizer_state()
|
259 |
-
if self.use_loss_scaling:
|
260 |
-
tfutil.init_uninitialized_vars([device.loss_scaling_var for device in self._devices.values()])
|
261 |
-
if self.minibatch_multiplier is not None:
|
262 |
-
tfutil.run([var.initializer for device in self._devices.values() for var in list(device.grad_acc_vars.values()) + [device.grad_acc_count]])
|
263 |
-
|
264 |
-
# Group everything into a single op.
|
265 |
-
with tfutil.absolute_name_scope(self.scope):
|
266 |
-
return tf.group(*all_ops, name="TrainingOp")
|
267 |
-
|
268 |
-
def reset_optimizer_state(self) -> None:
|
269 |
-
"""Reset internal state of the underlying optimizer."""
|
270 |
-
tfutil.assert_tf_initialized()
|
271 |
-
tfutil.run([var.initializer for device in self._devices.values() for var in device.optimizer.variables()])
|
272 |
-
|
273 |
-
def get_loss_scaling_var(self, device: str) -> Union[tf.Variable, None]:
|
274 |
-
"""Get or create variable representing log2 of the current dynamic loss scaling factor."""
|
275 |
-
return self._get_device(device).loss_scaling_var
|
276 |
-
|
277 |
-
def apply_loss_scaling(self, value: TfExpression) -> TfExpression:
|
278 |
-
"""Apply dynamic loss scaling for the given expression."""
|
279 |
-
assert tfutil.is_tf_expression(value)
|
280 |
-
if not self.use_loss_scaling:
|
281 |
-
return value
|
282 |
-
return value * tfutil.exp2(self.get_loss_scaling_var(value.device))
|
283 |
-
|
284 |
-
def undo_loss_scaling(self, value: TfExpression) -> TfExpression:
|
285 |
-
"""Undo the effect of dynamic loss scaling for the given expression."""
|
286 |
-
assert tfutil.is_tf_expression(value)
|
287 |
-
if not self.use_loss_scaling:
|
288 |
-
return value
|
289 |
-
return value * tfutil.exp2(-self.get_loss_scaling_var(value.device)) # pylint: disable=invalid-unary-operand-type
|
290 |
-
|
291 |
-
|
292 |
-
class SimpleAdam:
|
293 |
-
"""Simplified version of tf.train.AdamOptimizer that behaves identically when used with dnnlib.tflib.Optimizer."""
|
294 |
-
|
295 |
-
def __init__(self, name="Adam", learning_rate=0.001, beta1=0.9, beta2=0.999, epsilon=1e-8):
|
296 |
-
self.name = name
|
297 |
-
self.learning_rate = learning_rate
|
298 |
-
self.beta1 = beta1
|
299 |
-
self.beta2 = beta2
|
300 |
-
self.epsilon = epsilon
|
301 |
-
self.all_state_vars = []
|
302 |
-
|
303 |
-
def variables(self):
|
304 |
-
return self.all_state_vars
|
305 |
-
|
306 |
-
def compute_gradients(self, loss, var_list, gate_gradients=tf.train.Optimizer.GATE_NONE):
|
307 |
-
assert gate_gradients == tf.train.Optimizer.GATE_NONE
|
308 |
-
return list(zip(tf.gradients(loss, var_list), var_list))
|
309 |
-
|
310 |
-
def apply_gradients(self, grads_and_vars):
|
311 |
-
with tf.name_scope(self.name):
|
312 |
-
state_vars = []
|
313 |
-
update_ops = []
|
314 |
-
|
315 |
-
# Adjust learning rate to deal with startup bias.
|
316 |
-
with tf.control_dependencies(None):
|
317 |
-
b1pow_var = tf.Variable(dtype=tf.float32, initial_value=1, trainable=False)
|
318 |
-
b2pow_var = tf.Variable(dtype=tf.float32, initial_value=1, trainable=False)
|
319 |
-
state_vars += [b1pow_var, b2pow_var]
|
320 |
-
b1pow_new = b1pow_var * self.beta1
|
321 |
-
b2pow_new = b2pow_var * self.beta2
|
322 |
-
update_ops += [tf.assign(b1pow_var, b1pow_new), tf.assign(b2pow_var, b2pow_new)]
|
323 |
-
lr_new = self.learning_rate * tf.sqrt(1 - b2pow_new) / (1 - b1pow_new)
|
324 |
-
|
325 |
-
# Construct ops to update each variable.
|
326 |
-
for grad, var in grads_and_vars:
|
327 |
-
with tf.control_dependencies(None):
|
328 |
-
m_var = tf.Variable(dtype=tf.float32, initial_value=tf.zeros_like(var), trainable=False)
|
329 |
-
v_var = tf.Variable(dtype=tf.float32, initial_value=tf.zeros_like(var), trainable=False)
|
330 |
-
state_vars += [m_var, v_var]
|
331 |
-
m_new = self.beta1 * m_var + (1 - self.beta1) * grad
|
332 |
-
v_new = self.beta2 * v_var + (1 - self.beta2) * tf.square(grad)
|
333 |
-
var_delta = lr_new * m_new / (tf.sqrt(v_new) + self.epsilon)
|
334 |
-
update_ops += [tf.assign(m_var, m_new), tf.assign(v_var, v_new), tf.assign_sub(var, var_delta)]
|
335 |
-
|
336 |
-
# Group everything together.
|
337 |
-
self.all_state_vars += state_vars
|
338 |
-
return tf.group(*update_ops)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
dnnlib/tflib/tfutil.py
DELETED
@@ -1,254 +0,0 @@
|
|
1 |
-
# Copyright (c) SenseTime Research. All rights reserved.
|
2 |
-
|
3 |
-
# Copyright (c) 2019, NVIDIA Corporation. All rights reserved.
|
4 |
-
#
|
5 |
-
# This work is made available under the Nvidia Source Code License-NC.
|
6 |
-
# To view a copy of this license, visit
|
7 |
-
# https://nvlabs.github.io/stylegan2/license.html
|
8 |
-
|
9 |
-
"""Miscellaneous helper utils for Tensorflow."""
|
10 |
-
|
11 |
-
import os
|
12 |
-
import numpy as np
|
13 |
-
import tensorflow as tf
|
14 |
-
|
15 |
-
# Silence deprecation warnings from TensorFlow 1.13 onwards
|
16 |
-
import logging
|
17 |
-
logging.getLogger('tensorflow').setLevel(logging.ERROR)
|
18 |
-
import tensorflow.contrib # requires TensorFlow 1.x!
|
19 |
-
tf.contrib = tensorflow.contrib
|
20 |
-
|
21 |
-
from typing import Any, Iterable, List, Union
|
22 |
-
|
23 |
-
TfExpression = Union[tf.Tensor, tf.Variable, tf.Operation]
|
24 |
-
"""A type that represents a valid Tensorflow expression."""
|
25 |
-
|
26 |
-
TfExpressionEx = Union[TfExpression, int, float, np.ndarray]
|
27 |
-
"""A type that can be converted to a valid Tensorflow expression."""
|
28 |
-
|
29 |
-
|
30 |
-
def run(*args, **kwargs) -> Any:
|
31 |
-
"""Run the specified ops in the default session."""
|
32 |
-
assert_tf_initialized()
|
33 |
-
return tf.get_default_session().run(*args, **kwargs)
|
34 |
-
|
35 |
-
|
36 |
-
def is_tf_expression(x: Any) -> bool:
|
37 |
-
"""Check whether the input is a valid Tensorflow expression, i.e., Tensorflow Tensor, Variable, or Operation."""
|
38 |
-
return isinstance(x, (tf.Tensor, tf.Variable, tf.Operation))
|
39 |
-
|
40 |
-
|
41 |
-
def shape_to_list(shape: Iterable[tf.Dimension]) -> List[Union[int, None]]:
|
42 |
-
"""Convert a Tensorflow shape to a list of ints. Retained for backwards compatibility -- use TensorShape.as_list() in new code."""
|
43 |
-
return [dim.value for dim in shape]
|
44 |
-
|
45 |
-
|
46 |
-
def flatten(x: TfExpressionEx) -> TfExpression:
|
47 |
-
"""Shortcut function for flattening a tensor."""
|
48 |
-
with tf.name_scope("Flatten"):
|
49 |
-
return tf.reshape(x, [-1])
|
50 |
-
|
51 |
-
|
52 |
-
def log2(x: TfExpressionEx) -> TfExpression:
|
53 |
-
"""Logarithm in base 2."""
|
54 |
-
with tf.name_scope("Log2"):
|
55 |
-
return tf.log(x) * np.float32(1.0 / np.log(2.0))
|
56 |
-
|
57 |
-
|
58 |
-
def exp2(x: TfExpressionEx) -> TfExpression:
|
59 |
-
"""Exponent in base 2."""
|
60 |
-
with tf.name_scope("Exp2"):
|
61 |
-
return tf.exp(x * np.float32(np.log(2.0)))
|
62 |
-
|
63 |
-
|
64 |
-
def lerp(a: TfExpressionEx, b: TfExpressionEx, t: TfExpressionEx) -> TfExpressionEx:
|
65 |
-
"""Linear interpolation."""
|
66 |
-
with tf.name_scope("Lerp"):
|
67 |
-
return a + (b - a) * t
|
68 |
-
|
69 |
-
|
70 |
-
def lerp_clip(a: TfExpressionEx, b: TfExpressionEx, t: TfExpressionEx) -> TfExpression:
|
71 |
-
"""Linear interpolation with clip."""
|
72 |
-
with tf.name_scope("LerpClip"):
|
73 |
-
return a + (b - a) * tf.clip_by_value(t, 0.0, 1.0)
|
74 |
-
|
75 |
-
|
76 |
-
def absolute_name_scope(scope: str) -> tf.name_scope:
|
77 |
-
"""Forcefully enter the specified name scope, ignoring any surrounding scopes."""
|
78 |
-
return tf.name_scope(scope + "/")
|
79 |
-
|
80 |
-
|
81 |
-
def absolute_variable_scope(scope: str, **kwargs) -> tf.variable_scope:
|
82 |
-
"""Forcefully enter the specified variable scope, ignoring any surrounding scopes."""
|
83 |
-
return tf.variable_scope(tf.VariableScope(name=scope, **kwargs), auxiliary_name_scope=False)
|
84 |
-
|
85 |
-
|
86 |
-
def _sanitize_tf_config(config_dict: dict = None) -> dict:
|
87 |
-
# Defaults.
|
88 |
-
cfg = dict()
|
89 |
-
cfg["rnd.np_random_seed"] = None # Random seed for NumPy. None = keep as is.
|
90 |
-
cfg["rnd.tf_random_seed"] = "auto" # Random seed for TensorFlow. 'auto' = derive from NumPy random state. None = keep as is.
|
91 |
-
cfg["env.TF_CPP_MIN_LOG_LEVEL"] = "1" # 0 = Print all available debug info from TensorFlow. 1 = Print warnings and errors, but disable debug info.
|
92 |
-
cfg["graph_options.place_pruned_graph"] = True # False = Check that all ops are available on the designated device. True = Skip the check for ops that are not used.
|
93 |
-
cfg["gpu_options.allow_growth"] = True # False = Allocate all GPU memory at the beginning. True = Allocate only as much GPU memory as needed.
|
94 |
-
|
95 |
-
# Remove defaults for environment variables that are already set.
|
96 |
-
for key in list(cfg):
|
97 |
-
fields = key.split(".")
|
98 |
-
if fields[0] == "env":
|
99 |
-
assert len(fields) == 2
|
100 |
-
if fields[1] in os.environ:
|
101 |
-
del cfg[key]
|
102 |
-
|
103 |
-
# User overrides.
|
104 |
-
if config_dict is not None:
|
105 |
-
cfg.update(config_dict)
|
106 |
-
return cfg
|
107 |
-
|
108 |
-
|
109 |
-
def init_tf(config_dict: dict = None) -> None:
|
110 |
-
"""Initialize TensorFlow session using good default settings."""
|
111 |
-
# Skip if already initialized.
|
112 |
-
if tf.get_default_session() is not None:
|
113 |
-
return
|
114 |
-
|
115 |
-
# Setup config dict and random seeds.
|
116 |
-
cfg = _sanitize_tf_config(config_dict)
|
117 |
-
np_random_seed = cfg["rnd.np_random_seed"]
|
118 |
-
if np_random_seed is not None:
|
119 |
-
np.random.seed(np_random_seed)
|
120 |
-
tf_random_seed = cfg["rnd.tf_random_seed"]
|
121 |
-
if tf_random_seed == "auto":
|
122 |
-
tf_random_seed = np.random.randint(1 << 31)
|
123 |
-
if tf_random_seed is not None:
|
124 |
-
tf.set_random_seed(tf_random_seed)
|
125 |
-
|
126 |
-
# Setup environment variables.
|
127 |
-
for key, value in cfg.items():
|
128 |
-
fields = key.split(".")
|
129 |
-
if fields[0] == "env":
|
130 |
-
assert len(fields) == 2
|
131 |
-
os.environ[fields[1]] = str(value)
|
132 |
-
|
133 |
-
# Create default TensorFlow session.
|
134 |
-
create_session(cfg, force_as_default=True)
|
135 |
-
|
136 |
-
|
137 |
-
def assert_tf_initialized():
|
138 |
-
"""Check that TensorFlow session has been initialized."""
|
139 |
-
if tf.get_default_session() is None:
|
140 |
-
raise RuntimeError("No default TensorFlow session found. Please call dnnlib.tflib.init_tf().")
|
141 |
-
|
142 |
-
|
143 |
-
def create_session(config_dict: dict = None, force_as_default: bool = False) -> tf.Session:
|
144 |
-
"""Create tf.Session based on config dict."""
|
145 |
-
# Setup TensorFlow config proto.
|
146 |
-
cfg = _sanitize_tf_config(config_dict)
|
147 |
-
config_proto = tf.ConfigProto()
|
148 |
-
for key, value in cfg.items():
|
149 |
-
fields = key.split(".")
|
150 |
-
if fields[0] not in ["rnd", "env"]:
|
151 |
-
obj = config_proto
|
152 |
-
for field in fields[:-1]:
|
153 |
-
obj = getattr(obj, field)
|
154 |
-
setattr(obj, fields[-1], value)
|
155 |
-
|
156 |
-
# Create session.
|
157 |
-
session = tf.Session(config=config_proto)
|
158 |
-
if force_as_default:
|
159 |
-
# pylint: disable=protected-access
|
160 |
-
session._default_session = session.as_default()
|
161 |
-
session._default_session.enforce_nesting = False
|
162 |
-
session._default_session.__enter__()
|
163 |
-
return session
|
164 |
-
|
165 |
-
|
166 |
-
def init_uninitialized_vars(target_vars: List[tf.Variable] = None) -> None:
|
167 |
-
"""Initialize all tf.Variables that have not already been initialized.
|
168 |
-
|
169 |
-
Equivalent to the following, but more efficient and does not bloat the tf graph:
|
170 |
-
tf.variables_initializer(tf.report_uninitialized_variables()).run()
|
171 |
-
"""
|
172 |
-
assert_tf_initialized()
|
173 |
-
if target_vars is None:
|
174 |
-
target_vars = tf.global_variables()
|
175 |
-
|
176 |
-
test_vars = []
|
177 |
-
test_ops = []
|
178 |
-
|
179 |
-
with tf.control_dependencies(None): # ignore surrounding control_dependencies
|
180 |
-
for var in target_vars:
|
181 |
-
assert is_tf_expression(var)
|
182 |
-
|
183 |
-
try:
|
184 |
-
tf.get_default_graph().get_tensor_by_name(var.name.replace(":0", "/IsVariableInitialized:0"))
|
185 |
-
except KeyError:
|
186 |
-
# Op does not exist => variable may be uninitialized.
|
187 |
-
test_vars.append(var)
|
188 |
-
|
189 |
-
with absolute_name_scope(var.name.split(":")[0]):
|
190 |
-
test_ops.append(tf.is_variable_initialized(var))
|
191 |
-
|
192 |
-
init_vars = [var for var, inited in zip(test_vars, run(test_ops)) if not inited]
|
193 |
-
run([var.initializer for var in init_vars])
|
194 |
-
|
195 |
-
|
196 |
-
def set_vars(var_to_value_dict: dict) -> None:
|
197 |
-
"""Set the values of given tf.Variables.
|
198 |
-
|
199 |
-
Equivalent to the following, but more efficient and does not bloat the tf graph:
|
200 |
-
tflib.run([tf.assign(var, value) for var, value in var_to_value_dict.items()]
|
201 |
-
"""
|
202 |
-
assert_tf_initialized()
|
203 |
-
ops = []
|
204 |
-
feed_dict = {}
|
205 |
-
|
206 |
-
for var, value in var_to_value_dict.items():
|
207 |
-
assert is_tf_expression(var)
|
208 |
-
|
209 |
-
try:
|
210 |
-
setter = tf.get_default_graph().get_tensor_by_name(var.name.replace(":0", "/setter:0")) # look for existing op
|
211 |
-
except KeyError:
|
212 |
-
with absolute_name_scope(var.name.split(":")[0]):
|
213 |
-
with tf.control_dependencies(None): # ignore surrounding control_dependencies
|
214 |
-
setter = tf.assign(var, tf.placeholder(var.dtype, var.shape, "new_value"), name="setter") # create new setter
|
215 |
-
|
216 |
-
ops.append(setter)
|
217 |
-
feed_dict[setter.op.inputs[1]] = value
|
218 |
-
|
219 |
-
run(ops, feed_dict)
|
220 |
-
|
221 |
-
|
222 |
-
def create_var_with_large_initial_value(initial_value: np.ndarray, *args, **kwargs):
|
223 |
-
"""Create tf.Variable with large initial value without bloating the tf graph."""
|
224 |
-
assert_tf_initialized()
|
225 |
-
assert isinstance(initial_value, np.ndarray)
|
226 |
-
zeros = tf.zeros(initial_value.shape, initial_value.dtype)
|
227 |
-
var = tf.Variable(zeros, *args, **kwargs)
|
228 |
-
set_vars({var: initial_value})
|
229 |
-
return var
|
230 |
-
|
231 |
-
|
232 |
-
def convert_images_from_uint8(images, drange=[-1,1], nhwc_to_nchw=False):
|
233 |
-
"""Convert a minibatch of images from uint8 to float32 with configurable dynamic range.
|
234 |
-
Can be used as an input transformation for Network.run().
|
235 |
-
"""
|
236 |
-
images = tf.cast(images, tf.float32)
|
237 |
-
if nhwc_to_nchw:
|
238 |
-
images = tf.transpose(images, [0, 3, 1, 2])
|
239 |
-
return images * ((drange[1] - drange[0]) / 255) + drange[0]
|
240 |
-
|
241 |
-
|
242 |
-
def convert_images_to_uint8(images, drange=[-1,1], nchw_to_nhwc=False, shrink=1):
|
243 |
-
"""Convert a minibatch of images from float32 to uint8 with configurable dynamic range.
|
244 |
-
Can be used as an output transformation for Network.run().
|
245 |
-
"""
|
246 |
-
images = tf.cast(images, tf.float32)
|
247 |
-
if shrink > 1:
|
248 |
-
ksize = [1, 1, shrink, shrink]
|
249 |
-
images = tf.nn.avg_pool(images, ksize=ksize, strides=ksize, padding="VALID", data_format="NCHW")
|
250 |
-
if nchw_to_nhwc:
|
251 |
-
images = tf.transpose(images, [0, 2, 3, 1])
|
252 |
-
scale = 255 / (drange[1] - drange[0])
|
253 |
-
images = images * scale + (0.5 - drange[0] * scale)
|
254 |
-
return tf.saturate_cast(images, tf.uint8)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
dnnlib/util.py
DELETED
@@ -1,479 +0,0 @@
|
|
1 |
-
ο»Ώ# Copyright (c) SenseTime Research. All rights reserved.
|
2 |
-
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved.
|
3 |
-
#
|
4 |
-
# NVIDIA CORPORATION and its licensors retain all intellectual property
|
5 |
-
# and proprietary rights in and to this software, related documentation
|
6 |
-
# and any modifications thereto. Any use, reproduction, disclosure or
|
7 |
-
# distribution of this software and related documentation without an express
|
8 |
-
# license agreement from NVIDIA CORPORATION is strictly prohibited.
|
9 |
-
|
10 |
-
"""Miscellaneous utility classes and functions."""
|
11 |
-
|
12 |
-
import ctypes
|
13 |
-
import fnmatch
|
14 |
-
import importlib
|
15 |
-
import inspect
|
16 |
-
import numpy as np
|
17 |
-
import os
|
18 |
-
import shutil
|
19 |
-
import sys
|
20 |
-
import types
|
21 |
-
import io
|
22 |
-
import pickle
|
23 |
-
import re
|
24 |
-
import requests
|
25 |
-
import html
|
26 |
-
import hashlib
|
27 |
-
import glob
|
28 |
-
import tempfile
|
29 |
-
import urllib
|
30 |
-
import urllib.request
|
31 |
-
import uuid
|
32 |
-
|
33 |
-
from distutils.util import strtobool
|
34 |
-
from typing import Any, List, Tuple, Union
|
35 |
-
|
36 |
-
|
37 |
-
# Util classes
|
38 |
-
# ------------------------------------------------------------------------------------------
|
39 |
-
|
40 |
-
|
41 |
-
class EasyDict(dict):
|
42 |
-
"""Convenience class that behaves like a dict but allows access with the attribute syntax."""
|
43 |
-
|
44 |
-
def __getattr__(self, name: str) -> Any:
|
45 |
-
try:
|
46 |
-
return self[name]
|
47 |
-
except KeyError:
|
48 |
-
raise AttributeError(name)
|
49 |
-
|
50 |
-
def __setattr__(self, name: str, value: Any) -> None:
|
51 |
-
self[name] = value
|
52 |
-
|
53 |
-
def __delattr__(self, name: str) -> None:
|
54 |
-
del self[name]
|
55 |
-
|
56 |
-
|
57 |
-
class Logger(object):
|
58 |
-
"""Redirect stderr to stdout, optionally print stdout to a file, and optionally force flushing on both stdout and the file."""
|
59 |
-
|
60 |
-
def __init__(self, file_name: str = None, file_mode: str = "w", should_flush: bool = True):
|
61 |
-
self.file = None
|
62 |
-
|
63 |
-
if file_name is not None:
|
64 |
-
self.file = open(file_name, file_mode)
|
65 |
-
|
66 |
-
self.should_flush = should_flush
|
67 |
-
self.stdout = sys.stdout
|
68 |
-
self.stderr = sys.stderr
|
69 |
-
|
70 |
-
sys.stdout = self
|
71 |
-
sys.stderr = self
|
72 |
-
|
73 |
-
def __enter__(self) -> "Logger":
|
74 |
-
return self
|
75 |
-
|
76 |
-
def __exit__(self, exc_type: Any, exc_value: Any, traceback: Any) -> None:
|
77 |
-
self.close()
|
78 |
-
|
79 |
-
def write(self, text: Union[str, bytes]) -> None:
|
80 |
-
"""Write text to stdout (and a file) and optionally flush."""
|
81 |
-
if isinstance(text, bytes):
|
82 |
-
text = text.decode()
|
83 |
-
if len(text) == 0: # workaround for a bug in VSCode debugger: sys.stdout.write(''); sys.stdout.flush() => crash
|
84 |
-
return
|
85 |
-
|
86 |
-
if self.file is not None:
|
87 |
-
self.file.write(text)
|
88 |
-
|
89 |
-
self.stdout.write(text)
|
90 |
-
|
91 |
-
if self.should_flush:
|
92 |
-
self.flush()
|
93 |
-
|
94 |
-
def flush(self) -> None:
|
95 |
-
"""Flush written text to both stdout and a file, if open."""
|
96 |
-
if self.file is not None:
|
97 |
-
self.file.flush()
|
98 |
-
|
99 |
-
self.stdout.flush()
|
100 |
-
|
101 |
-
def close(self) -> None:
|
102 |
-
"""Flush, close possible files, and remove stdout/stderr mirroring."""
|
103 |
-
self.flush()
|
104 |
-
|
105 |
-
# if using multiple loggers, prevent closing in wrong order
|
106 |
-
if sys.stdout is self:
|
107 |
-
sys.stdout = self.stdout
|
108 |
-
if sys.stderr is self:
|
109 |
-
sys.stderr = self.stderr
|
110 |
-
|
111 |
-
if self.file is not None:
|
112 |
-
self.file.close()
|
113 |
-
self.file = None
|
114 |
-
|
115 |
-
|
116 |
-
# Cache directories
|
117 |
-
# ------------------------------------------------------------------------------------------
|
118 |
-
|
119 |
-
_dnnlib_cache_dir = None
|
120 |
-
|
121 |
-
def set_cache_dir(path: str) -> None:
|
122 |
-
global _dnnlib_cache_dir
|
123 |
-
_dnnlib_cache_dir = path
|
124 |
-
|
125 |
-
def make_cache_dir_path(*paths: str) -> str:
|
126 |
-
if _dnnlib_cache_dir is not None:
|
127 |
-
return os.path.join(_dnnlib_cache_dir, *paths)
|
128 |
-
if 'DNNLIB_CACHE_DIR' in os.environ:
|
129 |
-
return os.path.join(os.environ['DNNLIB_CACHE_DIR'], *paths)
|
130 |
-
if 'HOME' in os.environ:
|
131 |
-
return os.path.join(os.environ['HOME'], '.cache', 'dnnlib', *paths)
|
132 |
-
if 'USERPROFILE' in os.environ:
|
133 |
-
return os.path.join(os.environ['USERPROFILE'], '.cache', 'dnnlib', *paths)
|
134 |
-
return os.path.join(tempfile.gettempdir(), '.cache', 'dnnlib', *paths)
|
135 |
-
|
136 |
-
# Small util functions
|
137 |
-
# ------------------------------------------------------------------------------------------
|
138 |
-
|
139 |
-
|
140 |
-
def format_time(seconds: Union[int, float]) -> str:
|
141 |
-
"""Convert the seconds to human readable string with days, hours, minutes and seconds."""
|
142 |
-
s = int(np.rint(seconds))
|
143 |
-
|
144 |
-
if s < 60:
|
145 |
-
return "{0}s".format(s)
|
146 |
-
elif s < 60 * 60:
|
147 |
-
return "{0}m {1:02}s".format(s // 60, s % 60)
|
148 |
-
elif s < 24 * 60 * 60:
|
149 |
-
return "{0}h {1:02}m {2:02}s".format(s // (60 * 60), (s // 60) % 60, s % 60)
|
150 |
-
else:
|
151 |
-
return "{0}d {1:02}h {2:02}m".format(s // (24 * 60 * 60), (s // (60 * 60)) % 24, (s // 60) % 60)
|
152 |
-
|
153 |
-
|
154 |
-
def ask_yes_no(question: str) -> bool:
|
155 |
-
"""Ask the user the question until the user inputs a valid answer."""
|
156 |
-
while True:
|
157 |
-
try:
|
158 |
-
print("{0} [y/n]".format(question))
|
159 |
-
return strtobool(input().lower())
|
160 |
-
except ValueError:
|
161 |
-
pass
|
162 |
-
|
163 |
-
|
164 |
-
def tuple_product(t: Tuple) -> Any:
|
165 |
-
"""Calculate the product of the tuple elements."""
|
166 |
-
result = 1
|
167 |
-
|
168 |
-
for v in t:
|
169 |
-
result *= v
|
170 |
-
|
171 |
-
return result
|
172 |
-
|
173 |
-
|
174 |
-
_str_to_ctype = {
|
175 |
-
"uint8": ctypes.c_ubyte,
|
176 |
-
"uint16": ctypes.c_uint16,
|
177 |
-
"uint32": ctypes.c_uint32,
|
178 |
-
"uint64": ctypes.c_uint64,
|
179 |
-
"int8": ctypes.c_byte,
|
180 |
-
"int16": ctypes.c_int16,
|
181 |
-
"int32": ctypes.c_int32,
|
182 |
-
"int64": ctypes.c_int64,
|
183 |
-
"float32": ctypes.c_float,
|
184 |
-
"float64": ctypes.c_double
|
185 |
-
}
|
186 |
-
|
187 |
-
|
188 |
-
def get_dtype_and_ctype(type_obj: Any) -> Tuple[np.dtype, Any]:
|
189 |
-
"""Given a type name string (or an object having a __name__ attribute), return matching Numpy and ctypes types that have the same size in bytes."""
|
190 |
-
type_str = None
|
191 |
-
|
192 |
-
if isinstance(type_obj, str):
|
193 |
-
type_str = type_obj
|
194 |
-
elif hasattr(type_obj, "__name__"):
|
195 |
-
type_str = type_obj.__name__
|
196 |
-
elif hasattr(type_obj, "name"):
|
197 |
-
type_str = type_obj.name
|
198 |
-
else:
|
199 |
-
raise RuntimeError("Cannot infer type name from input")
|
200 |
-
|
201 |
-
assert type_str in _str_to_ctype.keys()
|
202 |
-
|
203 |
-
my_dtype = np.dtype(type_str)
|
204 |
-
my_ctype = _str_to_ctype[type_str]
|
205 |
-
|
206 |
-
assert my_dtype.itemsize == ctypes.sizeof(my_ctype)
|
207 |
-
|
208 |
-
return my_dtype, my_ctype
|
209 |
-
|
210 |
-
|
211 |
-
def is_pickleable(obj: Any) -> bool:
|
212 |
-
try:
|
213 |
-
with io.BytesIO() as stream:
|
214 |
-
pickle.dump(obj, stream)
|
215 |
-
return True
|
216 |
-
except:
|
217 |
-
return False
|
218 |
-
|
219 |
-
|
220 |
-
# Functionality to import modules/objects by name, and call functions by name
|
221 |
-
# ------------------------------------------------------------------------------------------
|
222 |
-
|
223 |
-
def get_module_from_obj_name(obj_name: str) -> Tuple[types.ModuleType, str]:
|
224 |
-
"""Searches for the underlying module behind the name to some python object.
|
225 |
-
Returns the module and the object name (original name with module part removed)."""
|
226 |
-
|
227 |
-
# allow convenience shorthands, substitute them by full names
|
228 |
-
obj_name = re.sub("^np.", "numpy.", obj_name)
|
229 |
-
obj_name = re.sub("^tf.", "tensorflow.", obj_name)
|
230 |
-
|
231 |
-
# list alternatives for (module_name, local_obj_name)
|
232 |
-
parts = obj_name.split(".")
|
233 |
-
name_pairs = [(".".join(parts[:i]), ".".join(parts[i:])) for i in range(len(parts), 0, -1)]
|
234 |
-
|
235 |
-
# try each alternative in turn
|
236 |
-
for module_name, local_obj_name in name_pairs:
|
237 |
-
try:
|
238 |
-
module = importlib.import_module(module_name) # may raise ImportError
|
239 |
-
get_obj_from_module(module, local_obj_name) # may raise AttributeError
|
240 |
-
return module, local_obj_name
|
241 |
-
except:
|
242 |
-
pass
|
243 |
-
|
244 |
-
# maybe some of the modules themselves contain errors?
|
245 |
-
for module_name, _local_obj_name in name_pairs:
|
246 |
-
try:
|
247 |
-
importlib.import_module(module_name) # may raise ImportError
|
248 |
-
except ImportError:
|
249 |
-
if not str(sys.exc_info()[1]).startswith("No module named '" + module_name + "'"):
|
250 |
-
raise
|
251 |
-
|
252 |
-
# maybe the requested attribute is missing?
|
253 |
-
for module_name, local_obj_name in name_pairs:
|
254 |
-
try:
|
255 |
-
module = importlib.import_module(module_name) # may raise ImportError
|
256 |
-
get_obj_from_module(module, local_obj_name) # may raise AttributeError
|
257 |
-
except ImportError:
|
258 |
-
pass
|
259 |
-
|
260 |
-
# we are out of luck, but we have no idea why
|
261 |
-
raise ImportError(obj_name)
|
262 |
-
|
263 |
-
|
264 |
-
def get_obj_from_module(module: types.ModuleType, obj_name: str) -> Any:
|
265 |
-
"""Traverses the object name and returns the last (rightmost) python object."""
|
266 |
-
if obj_name == '':
|
267 |
-
return module
|
268 |
-
obj = module
|
269 |
-
for part in obj_name.split("."):
|
270 |
-
obj = getattr(obj, part)
|
271 |
-
return obj
|
272 |
-
|
273 |
-
|
274 |
-
def get_obj_by_name(name: str) -> Any:
|
275 |
-
"""Finds the python object with the given name."""
|
276 |
-
module, obj_name = get_module_from_obj_name(name)
|
277 |
-
return get_obj_from_module(module, obj_name)
|
278 |
-
|
279 |
-
|
280 |
-
def call_func_by_name(*args, func_name: str = None, **kwargs) -> Any:
|
281 |
-
"""Finds the python object with the given name and calls it as a function."""
|
282 |
-
assert func_name is not None
|
283 |
-
# print('func_name: ', func_name) #'training.dataset.ImageFolderDataset'
|
284 |
-
func_obj = get_obj_by_name(func_name)
|
285 |
-
assert callable(func_obj)
|
286 |
-
return func_obj(*args, **kwargs)
|
287 |
-
|
288 |
-
|
289 |
-
def construct_class_by_name(*args, class_name: str = None, **kwargs) -> Any:
|
290 |
-
"""Finds the python class with the given name and constructs it with the given arguments."""
|
291 |
-
return call_func_by_name(*args, func_name=class_name, **kwargs)
|
292 |
-
|
293 |
-
|
294 |
-
def get_module_dir_by_obj_name(obj_name: str) -> str:
|
295 |
-
"""Get the directory path of the module containing the given object name."""
|
296 |
-
module, _ = get_module_from_obj_name(obj_name)
|
297 |
-
return os.path.dirname(inspect.getfile(module))
|
298 |
-
|
299 |
-
|
300 |
-
def is_top_level_function(obj: Any) -> bool:
|
301 |
-
"""Determine whether the given object is a top-level function, i.e., defined at module scope using 'def'."""
|
302 |
-
return callable(obj) and obj.__name__ in sys.modules[obj.__module__].__dict__
|
303 |
-
|
304 |
-
|
305 |
-
def get_top_level_function_name(obj: Any) -> str:
|
306 |
-
"""Return the fully-qualified name of a top-level function."""
|
307 |
-
assert is_top_level_function(obj)
|
308 |
-
module = obj.__module__
|
309 |
-
if module == '__main__':
|
310 |
-
module = os.path.splitext(os.path.basename(sys.modules[module].__file__))[0]
|
311 |
-
return module + "." + obj.__name__
|
312 |
-
|
313 |
-
|
314 |
-
# File system helpers
|
315 |
-
# ------------------------------------------------------------------------------------------
|
316 |
-
|
317 |
-
def list_dir_recursively_with_ignore(dir_path: str, ignores: List[str] = None, add_base_to_relative: bool = False) -> List[Tuple[str, str]]:
|
318 |
-
"""List all files recursively in a given directory while ignoring given file and directory names.
|
319 |
-
Returns list of tuples containing both absolute and relative paths."""
|
320 |
-
assert os.path.isdir(dir_path)
|
321 |
-
base_name = os.path.basename(os.path.normpath(dir_path))
|
322 |
-
|
323 |
-
if ignores is None:
|
324 |
-
ignores = []
|
325 |
-
|
326 |
-
result = []
|
327 |
-
|
328 |
-
for root, dirs, files in os.walk(dir_path, topdown=True):
|
329 |
-
for ignore_ in ignores:
|
330 |
-
dirs_to_remove = [d for d in dirs if fnmatch.fnmatch(d, ignore_)]
|
331 |
-
|
332 |
-
# dirs need to be edited in-place
|
333 |
-
for d in dirs_to_remove:
|
334 |
-
dirs.remove(d)
|
335 |
-
|
336 |
-
files = [f for f in files if not fnmatch.fnmatch(f, ignore_)]
|
337 |
-
|
338 |
-
absolute_paths = [os.path.join(root, f) for f in files]
|
339 |
-
relative_paths = [os.path.relpath(p, dir_path) for p in absolute_paths]
|
340 |
-
|
341 |
-
if add_base_to_relative:
|
342 |
-
relative_paths = [os.path.join(base_name, p) for p in relative_paths]
|
343 |
-
|
344 |
-
assert len(absolute_paths) == len(relative_paths)
|
345 |
-
result += zip(absolute_paths, relative_paths)
|
346 |
-
|
347 |
-
return result
|
348 |
-
|
349 |
-
|
350 |
-
def copy_files_and_create_dirs(files: List[Tuple[str, str]]) -> None:
|
351 |
-
"""Takes in a list of tuples of (src, dst) paths and copies files.
|
352 |
-
Will create all necessary directories."""
|
353 |
-
for file in files:
|
354 |
-
target_dir_name = os.path.dirname(file[1])
|
355 |
-
|
356 |
-
# will create all intermediate-level directories
|
357 |
-
if not os.path.exists(target_dir_name):
|
358 |
-
os.makedirs(target_dir_name)
|
359 |
-
|
360 |
-
shutil.copyfile(file[0], file[1])
|
361 |
-
|
362 |
-
|
363 |
-
# URL helpers
|
364 |
-
# ------------------------------------------------------------------------------------------
|
365 |
-
|
366 |
-
def is_url(obj: Any, allow_file_urls: bool = False) -> bool:
|
367 |
-
"""Determine whether the given object is a valid URL string."""
|
368 |
-
if not isinstance(obj, str) or not "://" in obj:
|
369 |
-
return False
|
370 |
-
if allow_file_urls and obj.startswith('file://'):
|
371 |
-
return True
|
372 |
-
try:
|
373 |
-
res = requests.compat.urlparse(obj)
|
374 |
-
if not res.scheme or not res.netloc or not "." in res.netloc:
|
375 |
-
return False
|
376 |
-
res = requests.compat.urlparse(requests.compat.urljoin(obj, "/"))
|
377 |
-
if not res.scheme or not res.netloc or not "." in res.netloc:
|
378 |
-
return False
|
379 |
-
except:
|
380 |
-
return False
|
381 |
-
return True
|
382 |
-
|
383 |
-
|
384 |
-
def open_url(url: str, cache_dir: str = None, num_attempts: int = 10, verbose: bool = True, return_filename: bool = False, cache: bool = True) -> Any:
|
385 |
-
"""Download the given URL and return a binary-mode file object to access the data."""
|
386 |
-
assert num_attempts >= 1
|
387 |
-
assert not (return_filename and (not cache))
|
388 |
-
|
389 |
-
# Doesn't look like an URL scheme so interpret it as a local filename.
|
390 |
-
if not re.match('^[a-z]+://', url):
|
391 |
-
return url if return_filename else open(url, "rb")
|
392 |
-
|
393 |
-
# Handle file URLs. This code handles unusual file:// patterns that
|
394 |
-
# arise on Windows:
|
395 |
-
#
|
396 |
-
# file:///c:/foo.txt
|
397 |
-
#
|
398 |
-
# which would translate to a local '/c:/foo.txt' filename that's
|
399 |
-
# invalid. Drop the forward slash for such pathnames.
|
400 |
-
#
|
401 |
-
# If you touch this code path, you should test it on both Linux and
|
402 |
-
# Windows.
|
403 |
-
#
|
404 |
-
# Some internet resources suggest using urllib.request.url2pathname() but
|
405 |
-
# but that converts forward slashes to backslashes and this causes
|
406 |
-
# its own set of problems.
|
407 |
-
if url.startswith('file://'):
|
408 |
-
filename = urllib.parse.urlparse(url).path
|
409 |
-
if re.match(r'^/[a-zA-Z]:', filename):
|
410 |
-
filename = filename[1:]
|
411 |
-
return filename if return_filename else open(filename, "rb")
|
412 |
-
|
413 |
-
assert is_url(url)
|
414 |
-
|
415 |
-
# Lookup from cache.
|
416 |
-
if cache_dir is None:
|
417 |
-
cache_dir = make_cache_dir_path('downloads')
|
418 |
-
|
419 |
-
url_md5 = hashlib.md5(url.encode("utf-8")).hexdigest()
|
420 |
-
if cache:
|
421 |
-
cache_files = glob.glob(os.path.join(cache_dir, url_md5 + "_*"))
|
422 |
-
if len(cache_files) == 1:
|
423 |
-
filename = cache_files[0]
|
424 |
-
return filename if return_filename else open(filename, "rb")
|
425 |
-
|
426 |
-
# Download.
|
427 |
-
url_name = None
|
428 |
-
url_data = None
|
429 |
-
with requests.Session() as session:
|
430 |
-
if verbose:
|
431 |
-
print("Downloading %s ..." % url, end="", flush=True)
|
432 |
-
for attempts_left in reversed(range(num_attempts)):
|
433 |
-
try:
|
434 |
-
with session.get(url) as res:
|
435 |
-
res.raise_for_status()
|
436 |
-
if len(res.content) == 0:
|
437 |
-
raise IOError("No data received")
|
438 |
-
|
439 |
-
if len(res.content) < 8192:
|
440 |
-
content_str = res.content.decode("utf-8")
|
441 |
-
if "download_warning" in res.headers.get("Set-Cookie", ""):
|
442 |
-
links = [html.unescape(link) for link in content_str.split('"') if "export=download" in link]
|
443 |
-
if len(links) == 1:
|
444 |
-
url = requests.compat.urljoin(url, links[0])
|
445 |
-
raise IOError("Google Drive virus checker nag")
|
446 |
-
if "Google Drive - Quota exceeded" in content_str:
|
447 |
-
raise IOError("Google Drive download quota exceeded -- please try again later")
|
448 |
-
|
449 |
-
match = re.search(r'filename="([^"]*)"', res.headers.get("Content-Disposition", ""))
|
450 |
-
url_name = match[1] if match else url
|
451 |
-
url_data = res.content
|
452 |
-
if verbose:
|
453 |
-
print(" done")
|
454 |
-
break
|
455 |
-
except KeyboardInterrupt:
|
456 |
-
raise
|
457 |
-
except:
|
458 |
-
if not attempts_left:
|
459 |
-
if verbose:
|
460 |
-
print(" failed")
|
461 |
-
raise
|
462 |
-
if verbose:
|
463 |
-
print(".", end="", flush=True)
|
464 |
-
|
465 |
-
# Save to cache.
|
466 |
-
if cache:
|
467 |
-
safe_name = re.sub(r"[^0-9a-zA-Z-._]", "_", url_name)
|
468 |
-
cache_file = os.path.join(cache_dir, url_md5 + "_" + safe_name)
|
469 |
-
temp_file = os.path.join(cache_dir, "tmp_" + uuid.uuid4().hex + "_" + url_md5 + "_" + safe_name)
|
470 |
-
os.makedirs(cache_dir, exist_ok=True)
|
471 |
-
with open(temp_file, "wb") as f:
|
472 |
-
f.write(url_data)
|
473 |
-
os.replace(temp_file, cache_file) # atomic
|
474 |
-
if return_filename:
|
475 |
-
return cache_file
|
476 |
-
|
477 |
-
# Return data as file object.
|
478 |
-
assert not return_filename
|
479 |
-
return io.BytesIO(url_data)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
losses/color_transfer_loss.py
ADDED
@@ -0,0 +1,60 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import List, Optional
|
2 |
+
|
3 |
+
import torch
|
4 |
+
from torch import nn
|
5 |
+
from torch.nn.functional import (
|
6 |
+
smooth_l1_loss,
|
7 |
+
)
|
8 |
+
|
9 |
+
|
10 |
+
def flatten_CHW(im: torch.Tensor) -> torch.Tensor:
|
11 |
+
"""
|
12 |
+
(B, C, H, W) -> (B, -1)
|
13 |
+
"""
|
14 |
+
B = im.shape[0]
|
15 |
+
return im.reshape(B, -1)
|
16 |
+
|
17 |
+
|
18 |
+
def stddev(x: torch.Tensor) -> torch.Tensor:
|
19 |
+
"""
|
20 |
+
x: (B, -1), assume with mean normalized
|
21 |
+
Retuens:
|
22 |
+
stddev: (B)
|
23 |
+
"""
|
24 |
+
return torch.sqrt(torch.mean(x * x, dim=-1))
|
25 |
+
|
26 |
+
|
27 |
+
def gram_matrix(input_):
|
28 |
+
B, C = input_.shape[:2]
|
29 |
+
features = input_.view(B, C, -1)
|
30 |
+
N = features.shape[-1]
|
31 |
+
G = torch.bmm(features, features.transpose(1, 2)) # C x C
|
32 |
+
return G.div(C * N)
|
33 |
+
|
34 |
+
|
35 |
+
class ColorTransferLoss(nn.Module):
|
36 |
+
"""Penalize the gram matrix difference between StyleGAN2's ToRGB outputs"""
|
37 |
+
def __init__(
|
38 |
+
self,
|
39 |
+
init_rgbs,
|
40 |
+
scale_rgb: bool = False
|
41 |
+
):
|
42 |
+
super().__init__()
|
43 |
+
|
44 |
+
with torch.no_grad():
|
45 |
+
init_feats = [x.detach() for x in init_rgbs]
|
46 |
+
self.stds = [stddev(flatten_CHW(rgb)) if scale_rgb else 1 for rgb in init_feats] # (B, 1, 1, 1) or scalar
|
47 |
+
self.grams = [gram_matrix(rgb / std) for rgb, std in zip(init_feats, self.stds)]
|
48 |
+
|
49 |
+
def forward(self, rgbs: List[torch.Tensor], level: int = None):
|
50 |
+
if level is None:
|
51 |
+
level = len(self.grams)
|
52 |
+
|
53 |
+
feats = rgbs
|
54 |
+
loss = 0
|
55 |
+
for i, (rgb, std) in enumerate(zip(feats[:level], self.stds[:level])):
|
56 |
+
G = gram_matrix(rgb / std)
|
57 |
+
loss = loss + smooth_l1_loss(G, self.grams[i])
|
58 |
+
|
59 |
+
return loss
|
60 |
+
|
losses/joint_loss.py
ADDED
@@ -0,0 +1,167 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from argparse import (
|
2 |
+
ArgumentParser,
|
3 |
+
Namespace,
|
4 |
+
)
|
5 |
+
from typing import (
|
6 |
+
Dict,
|
7 |
+
Iterable,
|
8 |
+
Optional,
|
9 |
+
Tuple,
|
10 |
+
)
|
11 |
+
|
12 |
+
import numpy as np
|
13 |
+
import torch
|
14 |
+
from torch import nn
|
15 |
+
|
16 |
+
from utils.misc import (
|
17 |
+
optional_string,
|
18 |
+
iterable_to_str,
|
19 |
+
)
|
20 |
+
|
21 |
+
from .contextual_loss import ContextualLoss
|
22 |
+
from .color_transfer_loss import ColorTransferLoss
|
23 |
+
from .regularize_noise import NoiseRegularizer
|
24 |
+
from .reconstruction import (
|
25 |
+
EyeLoss,
|
26 |
+
FaceLoss,
|
27 |
+
create_perceptual_loss,
|
28 |
+
ReconstructionArguments,
|
29 |
+
)
|
30 |
+
|
31 |
+
class LossArguments:
|
32 |
+
@staticmethod
|
33 |
+
def add_arguments(parser: ArgumentParser):
|
34 |
+
ReconstructionArguments.add_arguments(parser)
|
35 |
+
|
36 |
+
parser.add_argument("--color_transfer", type=float, default=1e10, help="color transfer loss weight")
|
37 |
+
parser.add_argument("--eye", type=float, default=0.1, help="eye loss weight")
|
38 |
+
parser.add_argument('--noise_regularize', type=float, default=5e4)
|
39 |
+
# contextual loss
|
40 |
+
parser.add_argument("--contextual", type=float, default=0.1, help="contextual loss weight")
|
41 |
+
parser.add_argument("--cx_layers", nargs='*', help="contextual loss layers",
|
42 |
+
choices=['relu1_2', 'relu2_2', 'relu3_4', 'relu4_4', 'relu5_4'],
|
43 |
+
default=['relu3_4', 'relu2_2', 'relu1_2'])
|
44 |
+
|
45 |
+
@staticmethod
|
46 |
+
def to_string(args: Namespace) -> str:
|
47 |
+
return (
|
48 |
+
ReconstructionArguments.to_string(args)
|
49 |
+
+ optional_string(args.eye > 0, f"-eye{args.eye}")
|
50 |
+
+ optional_string(args.color_transfer, f"-color{args.color_transfer:.1e}")
|
51 |
+
+ optional_string(
|
52 |
+
args.contextual,
|
53 |
+
f"-cx{args.contextual}({iterable_to_str(args.cx_layers)})"
|
54 |
+
)
|
55 |
+
#+ optional_string(args.mse, f"-mse{args.mse}")
|
56 |
+
+ optional_string(args.noise_regularize, f"-NR{args.noise_regularize:.1e}")
|
57 |
+
)
|
58 |
+
|
59 |
+
|
60 |
+
class BakedMultiContextualLoss(nn.Module):
|
61 |
+
"""Random sample different image patches for different vgg layers."""
|
62 |
+
def __init__(self, sibling: torch.Tensor, args: Namespace, size: int = 256):
|
63 |
+
super().__init__()
|
64 |
+
|
65 |
+
self.cxs = nn.ModuleList([ContextualLoss(use_vgg=True, vgg_layers=[layer])
|
66 |
+
for layer in args.cx_layers])
|
67 |
+
self.size = size
|
68 |
+
self.sibling = sibling.detach()
|
69 |
+
|
70 |
+
def forward(self, img: torch.Tensor):
|
71 |
+
cx_loss = 0
|
72 |
+
for cx in self.cxs:
|
73 |
+
h, w = np.random.randint(0, high=img.shape[-1] - self.size, size=2)
|
74 |
+
cx_loss = cx(self.sibling[..., h:h+self.size, w:w+self.size], img[..., h:h+self.size, w:w+self.size]) + cx_loss
|
75 |
+
return cx_loss
|
76 |
+
|
77 |
+
|
78 |
+
class BakedContextualLoss(ContextualLoss):
|
79 |
+
def __init__(self, sibling: torch.Tensor, args: Namespace, size: int = 256):
|
80 |
+
super().__init__(use_vgg=True, vgg_layers=args.cx_layers)
|
81 |
+
self.size = size
|
82 |
+
self.sibling = sibling.detach()
|
83 |
+
|
84 |
+
def forward(self, img: torch.Tensor):
|
85 |
+
h, w = np.random.randint(0, high=img.shape[-1] - self.size, size=2)
|
86 |
+
return super().forward(self.sibling[..., h:h+self.size, w:w+self.size], img[..., h:h+self.size, w:w+self.size])
|
87 |
+
|
88 |
+
|
89 |
+
class JointLoss(nn.Module):
|
90 |
+
def __init__(
|
91 |
+
self,
|
92 |
+
args: Namespace,
|
93 |
+
target: torch.Tensor,
|
94 |
+
sibling: Optional[torch.Tensor],
|
95 |
+
sibling_rgbs: Optional[Iterable[torch.Tensor]] = None,
|
96 |
+
):
|
97 |
+
super().__init__()
|
98 |
+
|
99 |
+
self.weights = {
|
100 |
+
"face": 1., "eye": args.eye,
|
101 |
+
"contextual": args.contextual, "color_transfer": args.color_transfer,
|
102 |
+
"noise": args.noise_regularize,
|
103 |
+
}
|
104 |
+
|
105 |
+
reconstruction = {}
|
106 |
+
if args.vgg > 0 or args.vggface > 0:
|
107 |
+
percept = create_perceptual_loss(args)
|
108 |
+
reconstruction.update(
|
109 |
+
{"face": FaceLoss(target, input_size=args.generator_size, size=args.recon_size, percept=percept)}
|
110 |
+
)
|
111 |
+
if args.eye > 0:
|
112 |
+
reconstruction.update(
|
113 |
+
{"eye": EyeLoss(target, input_size=args.generator_size, percept=percept)}
|
114 |
+
)
|
115 |
+
self.reconstruction = nn.ModuleDict(reconstruction)
|
116 |
+
|
117 |
+
exemplar = {}
|
118 |
+
if args.contextual > 0 and len(args.cx_layers) > 0:
|
119 |
+
assert sibling is not None
|
120 |
+
exemplar.update(
|
121 |
+
{"contextual": BakedContextualLoss(sibling, args)}
|
122 |
+
)
|
123 |
+
if args.color_transfer > 0:
|
124 |
+
assert sibling_rgbs is not None
|
125 |
+
self.sibling_rgbs = sibling_rgbs
|
126 |
+
exemplar.update(
|
127 |
+
{"color_transfer": ColorTransferLoss(init_rgbs=sibling_rgbs)}
|
128 |
+
)
|
129 |
+
self.exemplar = nn.ModuleDict(exemplar)
|
130 |
+
|
131 |
+
if args.noise_regularize > 0:
|
132 |
+
self.noise_criterion = NoiseRegularizer()
|
133 |
+
|
134 |
+
def forward(
|
135 |
+
self, img, degrade=None, noises=None, rgbs=None, rgb_level: Optional[int] = None
|
136 |
+
) -> Tuple[torch.Tensor, Dict[str, torch.Tensor]]:
|
137 |
+
"""
|
138 |
+
Args:
|
139 |
+
rgbs: results from the ToRGB layers
|
140 |
+
"""
|
141 |
+
# TODO: add current optimization resolution for noises
|
142 |
+
|
143 |
+
losses = {}
|
144 |
+
|
145 |
+
# reconstruction losses
|
146 |
+
for name, criterion in self.reconstruction.items():
|
147 |
+
losses[name] = criterion(img, degrade=degrade)
|
148 |
+
|
149 |
+
# exemplar losses
|
150 |
+
if 'contextual' in self.exemplar:
|
151 |
+
losses["contextual"] = self.exemplar["contextual"](img)
|
152 |
+
if "color_transfer" in self.exemplar:
|
153 |
+
assert rgbs is not None
|
154 |
+
losses["color_transfer"] = self.exemplar["color_transfer"](rgbs, level=rgb_level)
|
155 |
+
|
156 |
+
# noise regularizer
|
157 |
+
if self.weights["noise"] > 0:
|
158 |
+
losses["noise"] = self.noise_criterion(noises)
|
159 |
+
|
160 |
+
total_loss = 0
|
161 |
+
for name, loss in losses.items():
|
162 |
+
total_loss = total_loss + self.weights[name] * loss
|
163 |
+
return total_loss, losses
|
164 |
+
|
165 |
+
def update_sibling(self, sibling: torch.Tensor):
|
166 |
+
assert "contextual" in self.exemplar
|
167 |
+
self.exemplar["contextual"].sibling = sibling.detach()
|
losses/perceptual_loss.py
ADDED
@@ -0,0 +1,111 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Code borrowed from https://gist.github.com/alper111/8233cdb0414b4cb5853f2f730ab95a49#file-vgg_perceptual_loss-py-L5
|
3 |
+
"""
|
4 |
+
import torch
|
5 |
+
import torchvision
|
6 |
+
from models.vggface import VGGFaceFeats
|
7 |
+
|
8 |
+
|
9 |
+
def cos_loss(fi, ft):
|
10 |
+
return 1 - torch.nn.functional.cosine_similarity(fi, ft).mean()
|
11 |
+
|
12 |
+
|
13 |
+
class VGGPerceptualLoss(torch.nn.Module):
|
14 |
+
def __init__(self, resize=False):
|
15 |
+
super(VGGPerceptualLoss, self).__init__()
|
16 |
+
blocks = []
|
17 |
+
blocks.append(torchvision.models.vgg16(pretrained=True).features[:4].eval())
|
18 |
+
blocks.append(torchvision.models.vgg16(pretrained=True).features[4:9].eval())
|
19 |
+
blocks.append(torchvision.models.vgg16(pretrained=True).features[9:16].eval())
|
20 |
+
blocks.append(torchvision.models.vgg16(pretrained=True).features[16:23].eval())
|
21 |
+
for bl in blocks:
|
22 |
+
for p in bl:
|
23 |
+
p.requires_grad = False
|
24 |
+
self.blocks = torch.nn.ModuleList(blocks)
|
25 |
+
self.transform = torch.nn.functional.interpolate
|
26 |
+
self.mean = torch.nn.Parameter(torch.tensor([0.485, 0.456, 0.406]).view(1,3,1,1))
|
27 |
+
self.std = torch.nn.Parameter(torch.tensor([0.229, 0.224, 0.225]).view(1,3,1,1))
|
28 |
+
self.resize = resize
|
29 |
+
|
30 |
+
def forward(self, input, target, max_layer=4, cos_dist: bool = False):
|
31 |
+
target = (target + 1) * 0.5
|
32 |
+
input = (input + 1) * 0.5
|
33 |
+
|
34 |
+
if input.shape[1] != 3:
|
35 |
+
input = input.repeat(1, 3, 1, 1)
|
36 |
+
target = target.repeat(1, 3, 1, 1)
|
37 |
+
input = (input-self.mean) / self.std
|
38 |
+
target = (target-self.mean) / self.std
|
39 |
+
if self.resize:
|
40 |
+
input = self.transform(input, mode='bilinear', size=(224, 224), align_corners=False)
|
41 |
+
target = self.transform(target, mode='bilinear', size=(224, 224), align_corners=False)
|
42 |
+
x = input
|
43 |
+
y = target
|
44 |
+
loss = 0.0
|
45 |
+
loss_func = cos_loss if cos_dist else torch.nn.functional.l1_loss
|
46 |
+
for bi, block in enumerate(self.blocks[:max_layer]):
|
47 |
+
x = block(x)
|
48 |
+
y = block(y)
|
49 |
+
loss += loss_func(x, y.detach())
|
50 |
+
return loss
|
51 |
+
|
52 |
+
|
53 |
+
class VGGFacePerceptualLoss(torch.nn.Module):
|
54 |
+
def __init__(self, weight_path: str = "checkpoint/vgg_face_dag.pt", resize: bool = False):
|
55 |
+
super().__init__()
|
56 |
+
self.vgg = VGGFaceFeats()
|
57 |
+
self.vgg.load_state_dict(torch.load(weight_path))
|
58 |
+
|
59 |
+
mean = torch.tensor(self.vgg.meta["mean"]).view(1, 3, 1, 1) / 255.0
|
60 |
+
self.register_buffer("mean", mean)
|
61 |
+
|
62 |
+
self.transform = torch.nn.functional.interpolate
|
63 |
+
self.resize = resize
|
64 |
+
|
65 |
+
def forward(self, input, target, max_layer: int = 4, cos_dist: bool = False):
|
66 |
+
target = (target + 1) * 0.5
|
67 |
+
input = (input + 1) * 0.5
|
68 |
+
|
69 |
+
# preprocessing
|
70 |
+
if input.shape[1] != 3:
|
71 |
+
input = input.repeat(1, 3, 1, 1)
|
72 |
+
target = target.repeat(1, 3, 1, 1)
|
73 |
+
input = input - self.mean
|
74 |
+
target = target - self.mean
|
75 |
+
if self.resize:
|
76 |
+
input = self.transform(input, mode='bilinear', size=(224, 224), align_corners=False)
|
77 |
+
target = self.transform(target, mode='bilinear', size=(224, 224), align_corners=False)
|
78 |
+
|
79 |
+
input_feats = self.vgg(input)
|
80 |
+
target_feats = self.vgg(target)
|
81 |
+
|
82 |
+
loss_func = cos_loss if cos_dist else torch.nn.functional.l1_loss
|
83 |
+
# calc perceptual loss
|
84 |
+
loss = 0.0
|
85 |
+
for fi, ft in zip(input_feats[:max_layer], target_feats[:max_layer]):
|
86 |
+
loss = loss + loss_func(fi, ft.detach())
|
87 |
+
return loss
|
88 |
+
|
89 |
+
|
90 |
+
class PerceptualLoss(torch.nn.Module):
|
91 |
+
def __init__(
|
92 |
+
self, lambda_vggface: float = 0.025 / 0.15, lambda_vgg: float = 1, eps: float = 1e-8, cos_dist: bool = False
|
93 |
+
):
|
94 |
+
super().__init__()
|
95 |
+
self.register_buffer("lambda_vggface", torch.tensor(lambda_vggface))
|
96 |
+
self.register_buffer("lambda_vgg", torch.tensor(lambda_vgg))
|
97 |
+
self.cos_dist = cos_dist
|
98 |
+
|
99 |
+
if lambda_vgg > eps:
|
100 |
+
self.vgg = VGGPerceptualLoss()
|
101 |
+
if lambda_vggface > eps:
|
102 |
+
self.vggface = VGGFacePerceptualLoss()
|
103 |
+
|
104 |
+
def forward(self, input, target, eps=1e-8, use_vggface: bool = True, use_vgg=True, max_vgg_layer=4):
|
105 |
+
loss = 0.0
|
106 |
+
if self.lambda_vgg > eps and use_vgg:
|
107 |
+
loss = loss + self.lambda_vgg * self.vgg(input, target, max_layer=max_vgg_layer)
|
108 |
+
if self.lambda_vggface > eps and use_vggface:
|
109 |
+
loss = loss + self.lambda_vggface * self.vggface(input, target, cos_dist=self.cos_dist)
|
110 |
+
return loss
|
111 |
+
|
losses/reconstruction.py
ADDED
@@ -0,0 +1,119 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from argparse import (
|
2 |
+
ArgumentParser,
|
3 |
+
Namespace,
|
4 |
+
)
|
5 |
+
from typing import Optional
|
6 |
+
|
7 |
+
import numpy as np
|
8 |
+
import torch
|
9 |
+
from torch import nn
|
10 |
+
|
11 |
+
from losses.perceptual_loss import PerceptualLoss
|
12 |
+
from models.degrade import Downsample
|
13 |
+
from utils.misc import optional_string
|
14 |
+
|
15 |
+
|
16 |
+
class ReconstructionArguments:
|
17 |
+
@staticmethod
|
18 |
+
def add_arguments(parser: ArgumentParser):
|
19 |
+
parser.add_argument("--vggface", type=float, default=0.3, help="vggface")
|
20 |
+
parser.add_argument("--vgg", type=float, default=1, help="vgg")
|
21 |
+
parser.add_argument('--recon_size', type=int, default=256, help="size for face reconstruction loss")
|
22 |
+
|
23 |
+
@staticmethod
|
24 |
+
def to_string(args: Namespace) -> str:
|
25 |
+
return (
|
26 |
+
f"s{args.recon_size}"
|
27 |
+
+ optional_string(args.vgg > 0, f"-vgg{args.vgg}")
|
28 |
+
+ optional_string(args.vggface > 0, f"-vggface{args.vggface}")
|
29 |
+
)
|
30 |
+
|
31 |
+
|
32 |
+
def create_perceptual_loss(args: Namespace):
|
33 |
+
return PerceptualLoss(lambda_vgg=args.vgg, lambda_vggface=args.vggface, cos_dist=False)
|
34 |
+
|
35 |
+
|
36 |
+
class EyeLoss(nn.Module):
|
37 |
+
def __init__(
|
38 |
+
self,
|
39 |
+
target: torch.Tensor,
|
40 |
+
input_size: int = 1024,
|
41 |
+
input_channels: int = 3,
|
42 |
+
percept: Optional[nn.Module] = None,
|
43 |
+
args: Optional[Namespace] = None
|
44 |
+
):
|
45 |
+
"""
|
46 |
+
target: target image
|
47 |
+
"""
|
48 |
+
assert not (percept is None and args is None)
|
49 |
+
|
50 |
+
super().__init__()
|
51 |
+
|
52 |
+
self.target = target
|
53 |
+
|
54 |
+
target_size = target.shape[-1]
|
55 |
+
self.downsample = Downsample(input_size, target_size, input_channels) \
|
56 |
+
if target_size != input_size else (lambda x: x)
|
57 |
+
|
58 |
+
self.percept = percept if percept is not None else create_perceptual_loss(args)
|
59 |
+
|
60 |
+
eye_size = np.array((224, 224))
|
61 |
+
btlrs = []
|
62 |
+
for sgn in [1, -1]:
|
63 |
+
center = np.array((480, 384 * sgn)) # (y, x)
|
64 |
+
b, t = center[0] - eye_size[0] // 2, center[0] + eye_size[0] // 2
|
65 |
+
l, r = center[1] - eye_size[1] // 2, center[1] + eye_size[1] // 2
|
66 |
+
btlrs.append((np.array((b, t, l, r)) / 1024 * target_size).astype(int))
|
67 |
+
self.btlrs = np.stack(btlrs, axis=0)
|
68 |
+
|
69 |
+
def forward(self, img: torch.Tensor, degrade: nn.Module = None):
|
70 |
+
"""
|
71 |
+
img: it should be the degraded version of the generated image
|
72 |
+
"""
|
73 |
+
if degrade is not None:
|
74 |
+
img = degrade(img, downsample=self.downsample)
|
75 |
+
|
76 |
+
loss = 0
|
77 |
+
for (b, t, l, r) in self.btlrs:
|
78 |
+
loss = loss + self.percept(
|
79 |
+
img[:, :, b:t, l:r], self.target[:, :, b:t, l:r],
|
80 |
+
use_vggface=False, max_vgg_layer=4,
|
81 |
+
# use_vgg=False,
|
82 |
+
)
|
83 |
+
return loss
|
84 |
+
|
85 |
+
|
86 |
+
class FaceLoss(nn.Module):
|
87 |
+
def __init__(
|
88 |
+
self,
|
89 |
+
target: torch.Tensor,
|
90 |
+
input_size: int = 1024,
|
91 |
+
input_channels: int = 3,
|
92 |
+
size: int = 256,
|
93 |
+
percept: Optional[nn.Module] = None,
|
94 |
+
args: Optional[Namespace] = None
|
95 |
+
):
|
96 |
+
"""
|
97 |
+
target: target image
|
98 |
+
"""
|
99 |
+
assert not (percept is None and args is None)
|
100 |
+
|
101 |
+
super().__init__()
|
102 |
+
|
103 |
+
target_size = target.shape[-1]
|
104 |
+
self.target = target if target_size == size \
|
105 |
+
else Downsample(target_size, size, target.shape[1]).to(target.device)(target)
|
106 |
+
|
107 |
+
self.downsample = Downsample(input_size, size, input_channels) \
|
108 |
+
if size != input_size else (lambda x: x)
|
109 |
+
|
110 |
+
self.percept = percept if percept is not None else create_perceptual_loss(args)
|
111 |
+
|
112 |
+
def forward(self, img: torch.Tensor, degrade: nn.Module = None):
|
113 |
+
"""
|
114 |
+
img: it should be the degraded version of the generated image
|
115 |
+
"""
|
116 |
+
if degrade is not None:
|
117 |
+
img = degrade(img, downsample=self.downsample)
|
118 |
+
loss = self.percept(img, self.target)
|
119 |
+
return loss
|
losses/regularize_noise.py
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Iterable
|
2 |
+
|
3 |
+
import torch
|
4 |
+
from torch import nn
|
5 |
+
|
6 |
+
|
7 |
+
class NoiseRegularizer(nn.Module):
|
8 |
+
def forward(self, noises: Iterable[torch.Tensor]):
|
9 |
+
loss = 0
|
10 |
+
|
11 |
+
for noise in noises:
|
12 |
+
size = noise.shape[2]
|
13 |
+
|
14 |
+
while True:
|
15 |
+
loss = (
|
16 |
+
loss
|
17 |
+
+ (noise * torch.roll(noise, shifts=1, dims=3)).mean().pow(2)
|
18 |
+
+ (noise * torch.roll(noise, shifts=1, dims=2)).mean().pow(2)
|
19 |
+
)
|
20 |
+
|
21 |
+
if size <= 8:
|
22 |
+
break
|
23 |
+
|
24 |
+
noise = noise.reshape([1, 1, size // 2, 2, size // 2, 2])
|
25 |
+
noise = noise.mean([3, 5])
|
26 |
+
size //= 2
|
27 |
+
|
28 |
+
return loss
|
29 |
+
|
30 |
+
@staticmethod
|
31 |
+
def normalize(noises: Iterable[torch.Tensor]):
|
32 |
+
for noise in noises:
|
33 |
+
mean = noise.mean()
|
34 |
+
std = noise.std()
|
35 |
+
|
36 |
+
noise.data.add_(-mean).div_(std)
|
37 |
+
|
torch_utils/models_face.py β model.py
RENAMED
@@ -1,17 +1,15 @@
|
|
1 |
-
# Copyright (c) SenseTime Research. All rights reserved.
|
2 |
-
|
3 |
import math
|
4 |
import random
|
5 |
import functools
|
6 |
import operator
|
|
|
7 |
|
8 |
import torch
|
9 |
from torch import nn
|
10 |
from torch.nn import functional as F
|
11 |
-
import torch.nn.init as init
|
12 |
from torch.autograd import Function
|
13 |
|
14 |
-
from
|
15 |
|
16 |
|
17 |
class PixelNorm(nn.Module):
|
@@ -39,7 +37,7 @@ class Upsample(nn.Module):
|
|
39 |
|
40 |
self.factor = factor
|
41 |
kernel = make_kernel(kernel) * (factor ** 2)
|
42 |
-
self.register_buffer(
|
43 |
|
44 |
p = kernel.shape[0] - factor
|
45 |
|
@@ -60,7 +58,7 @@ class Downsample(nn.Module):
|
|
60 |
|
61 |
self.factor = factor
|
62 |
kernel = make_kernel(kernel)
|
63 |
-
self.register_buffer(
|
64 |
|
65 |
p = kernel.shape[0] - factor
|
66 |
|
@@ -84,7 +82,7 @@ class Blur(nn.Module):
|
|
84 |
if upsample_factor > 1:
|
85 |
kernel = kernel * (upsample_factor ** 2)
|
86 |
|
87 |
-
self.register_buffer(
|
88 |
|
89 |
self.pad = pad
|
90 |
|
@@ -127,8 +125,8 @@ class EqualConv2d(nn.Module):
|
|
127 |
|
128 |
def __repr__(self):
|
129 |
return (
|
130 |
-
f
|
131 |
-
f
|
132 |
)
|
133 |
|
134 |
|
@@ -165,7 +163,7 @@ class EqualLinear(nn.Module):
|
|
165 |
|
166 |
def __repr__(self):
|
167 |
return (
|
168 |
-
f
|
169 |
)
|
170 |
|
171 |
|
@@ -232,8 +230,8 @@ class ModulatedConv2d(nn.Module):
|
|
232 |
|
233 |
def __repr__(self):
|
234 |
return (
|
235 |
-
f
|
236 |
-
f
|
237 |
)
|
238 |
|
239 |
def forward(self, input, style):
|
@@ -356,6 +354,7 @@ class ToRGB(nn.Module):
|
|
356 |
|
357 |
def forward(self, input, style, skip=None):
|
358 |
out = self.conv(input, style)
|
|
|
359 |
out = out + self.bias
|
360 |
|
361 |
if skip is not None:
|
@@ -363,7 +362,7 @@ class ToRGB(nn.Module):
|
|
363 |
|
364 |
out = out + skip
|
365 |
|
366 |
-
return out
|
367 |
|
368 |
|
369 |
class Generator(nn.Module):
|
@@ -372,19 +371,14 @@ class Generator(nn.Module):
|
|
372 |
size,
|
373 |
style_dim,
|
374 |
n_mlp,
|
375 |
-
channel_multiplier=
|
376 |
blur_kernel=[1, 3, 3, 1],
|
377 |
lr_mlp=0.01,
|
378 |
-
small=False,
|
379 |
-
small_isaac=False,
|
380 |
):
|
381 |
super().__init__()
|
382 |
|
383 |
self.size = size
|
384 |
|
385 |
-
if small and size > 64:
|
386 |
-
raise ValueError("small only works for sizes <= 64")
|
387 |
-
|
388 |
self.style_dim = style_dim
|
389 |
|
390 |
layers = [PixelNorm()]
|
@@ -392,34 +386,23 @@ class Generator(nn.Module):
|
|
392 |
for i in range(n_mlp):
|
393 |
layers.append(
|
394 |
EqualLinear(
|
395 |
-
style_dim, style_dim, lr_mul=lr_mlp, activation=
|
396 |
)
|
397 |
)
|
398 |
|
399 |
self.style = nn.Sequential(*layers)
|
400 |
|
401 |
-
|
402 |
-
|
403 |
-
|
404 |
-
|
405 |
-
|
406 |
-
|
407 |
-
|
408 |
-
|
409 |
-
|
410 |
-
|
411 |
-
|
412 |
-
self.channels = {
|
413 |
-
4: 512,
|
414 |
-
8: 512,
|
415 |
-
16: 512,
|
416 |
-
32: 512,
|
417 |
-
64: 256 * channel_multiplier,
|
418 |
-
128: 128 * channel_multiplier,
|
419 |
-
256: 64 * channel_multiplier,
|
420 |
-
512: 32 * channel_multiplier,
|
421 |
-
1024: 16 * channel_multiplier,
|
422 |
-
}
|
423 |
|
424 |
self.input = ConstantInput(self.channels[4])
|
425 |
self.conv1 = StyledConv(
|
@@ -440,9 +423,7 @@ class Generator(nn.Module):
|
|
440 |
for layer_idx in range(self.num_layers):
|
441 |
res = (layer_idx + 5) // 2
|
442 |
shape = [1, 1, 2 ** res, 2 ** res]
|
443 |
-
self.noises.register_buffer(
|
444 |
-
"noise_{}".format(layer_idx), torch.randn(*shape)
|
445 |
-
)
|
446 |
|
447 |
for i in range(3, self.log_size + 1):
|
448 |
out_channel = self.channels[2 ** i]
|
@@ -470,17 +451,32 @@ class Generator(nn.Module):
|
|
470 |
|
471 |
self.n_latent = self.log_size * 2 - 2
|
472 |
|
473 |
-
|
474 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
475 |
|
|
|
|
|
|
|
476 |
noises = [torch.randn(1, 1, 2 ** 2, 2 ** 2, device=device)]
|
477 |
|
478 |
-
for i in range(3,
|
479 |
for _ in range(2):
|
480 |
noises.append(torch.randn(1, 1, 2 ** i, 2 ** i, device=device))
|
481 |
|
482 |
return noises
|
483 |
|
|
|
|
|
|
|
|
|
484 |
def mean_latent(self, n_latent):
|
485 |
latent_in = torch.randn(
|
486 |
n_latent, self.style_dim, device=self.input.input.device
|
@@ -496,7 +492,6 @@ class Generator(nn.Module):
|
|
496 |
self,
|
497 |
styles,
|
498 |
return_latents=False,
|
499 |
-
return_features=False,
|
500 |
inject_index=None,
|
501 |
truncation=1,
|
502 |
truncation_latent=None,
|
@@ -505,15 +500,14 @@ class Generator(nn.Module):
|
|
505 |
randomize_noise=True,
|
506 |
):
|
507 |
if not input_is_latent:
|
508 |
-
# print("haha")
|
509 |
styles = [self.style(s) for s in styles]
|
|
|
510 |
if noise is None:
|
511 |
if randomize_noise:
|
512 |
noise = [None] * self.num_layers
|
513 |
else:
|
514 |
noise = [
|
515 |
-
getattr(self.noises,
|
516 |
-
for i in range(self.num_layers)
|
517 |
]
|
518 |
|
519 |
if truncation < 1:
|
@@ -525,61 +519,50 @@ class Generator(nn.Module):
|
|
525 |
)
|
526 |
|
527 |
styles = style_t
|
528 |
-
|
529 |
if len(styles) < 2:
|
530 |
inject_index = self.n_latent
|
531 |
-
|
532 |
if styles[0].ndim < 3:
|
533 |
latent = styles[0].unsqueeze(1).repeat(1, inject_index, 1)
|
534 |
-
|
535 |
else:
|
536 |
-
# print(len(styles))
|
537 |
latent = styles[0]
|
538 |
-
# print("b", latent.shape)
|
539 |
|
540 |
else:
|
541 |
-
# print("c")
|
542 |
if inject_index is None:
|
543 |
-
inject_index =
|
544 |
-
|
545 |
-
latent = styles[0].unsqueeze(
|
546 |
-
if latent.shape[1] == 1:
|
547 |
-
latent = latent.repeat(1, inject_index, 1)
|
548 |
-
else:
|
549 |
-
latent = latent[:, :inject_index, :]
|
550 |
latent2 = styles[1].unsqueeze(1).repeat(1, self.n_latent - inject_index, 1)
|
551 |
|
552 |
latent = torch.cat([latent, latent2], 1)
|
553 |
|
554 |
-
features = {}
|
555 |
out = self.input(latent)
|
556 |
-
features["out_0"] = out
|
557 |
out = self.conv1(out, latent[:, 0], noise=noise[0])
|
558 |
-
features["conv1_0"] = out
|
559 |
|
560 |
-
skip = self.to_rgb1(out, latent[:, 1])
|
561 |
-
|
|
|
|
|
562 |
i = 1
|
563 |
for conv1, conv2, noise1, noise2, to_rgb in zip(
|
564 |
self.convs[::2], self.convs[1::2], noise[1::2], noise[2::2], self.to_rgbs
|
565 |
):
|
566 |
out = conv1(out, latent[:, i], noise=noise1)
|
567 |
-
features["conv1_{}".format(i)] = out
|
568 |
out = conv2(out, latent[:, i + 1], noise=noise2)
|
569 |
-
|
570 |
-
|
571 |
-
features["skip_{}".format(i)] = skip
|
572 |
|
573 |
i += 2
|
574 |
|
575 |
image = skip
|
576 |
|
577 |
if return_latents:
|
578 |
-
return image, latent
|
579 |
-
|
580 |
-
return image, features
|
581 |
else:
|
582 |
-
return image, None
|
583 |
|
584 |
|
585 |
class ConvLayer(nn.Sequential):
|
@@ -652,27 +635,21 @@ class ResBlock(nn.Module):
|
|
652 |
return out
|
653 |
|
654 |
|
655 |
-
class
|
656 |
-
def __init__(
|
657 |
-
self, size, channel_multiplier=2, blur_kernel=[1, 3, 3, 1], small=False
|
658 |
-
):
|
659 |
super().__init__()
|
660 |
|
661 |
-
|
662 |
-
|
663 |
-
|
664 |
-
|
665 |
-
|
666 |
-
|
667 |
-
|
668 |
-
|
669 |
-
|
670 |
-
|
671 |
-
|
672 |
-
256: 64 * channel_multiplier,
|
673 |
-
512: 32 * channel_multiplier,
|
674 |
-
1024: 16 * channel_multiplier,
|
675 |
-
}
|
676 |
|
677 |
convs = [ConvLayer(3, channels[size], 1)]
|
678 |
|
@@ -694,39 +671,13 @@ class StyleDiscriminator(nn.Module):
|
|
694 |
|
695 |
self.final_conv = ConvLayer(in_channel + 1, channels[4], 3)
|
696 |
self.final_linear = nn.Sequential(
|
697 |
-
EqualLinear(channels[4] * 4 * 4, channels[4], activation=
|
698 |
EqualLinear(channels[4], 1),
|
699 |
)
|
700 |
|
701 |
-
# def forward(self, input):
|
702 |
-
# out = self.convs(input)
|
703 |
-
|
704 |
-
# batch, channel, height, width = out.shape
|
705 |
-
# group = min(batch, self.stddev_group)
|
706 |
-
# stddev = out.view(
|
707 |
-
# group, -1, self.stddev_feat, channel // self.stddev_feat, height, width
|
708 |
-
# )
|
709 |
-
# stddev = torch.sqrt(stddev.var(0, unbiased=False) + 1e-8)
|
710 |
-
# stddev = stddev.mean([2, 3, 4], keepdims=True).squeeze(2)
|
711 |
-
# stddev = stddev.repeat(group, 1, height, width)
|
712 |
-
# out = torch.cat([out, stddev], 1)
|
713 |
-
|
714 |
-
# out = self.final_conv(out)
|
715 |
-
|
716 |
-
# out = out.view(batch, -1)
|
717 |
-
# out = self.final_linear(out)
|
718 |
-
|
719 |
-
# return out
|
720 |
-
|
721 |
def forward(self, input):
|
722 |
-
|
723 |
-
|
724 |
-
|
725 |
-
for index, blocklist in enumerate(self.convs):
|
726 |
-
h = blocklist(h)
|
727 |
-
h_list.append(h)
|
728 |
-
|
729 |
-
out = h
|
730 |
batch, channel, height, width = out.shape
|
731 |
group = min(batch, self.stddev_group)
|
732 |
stddev = out.view(
|
@@ -738,72 +689,9 @@ class StyleDiscriminator(nn.Module):
|
|
738 |
out = torch.cat([out, stddev], 1)
|
739 |
|
740 |
out = self.final_conv(out)
|
741 |
-
|
742 |
-
|
743 |
out = out.view(batch, -1)
|
744 |
out = self.final_linear(out)
|
745 |
-
|
746 |
-
return out, h_list
|
747 |
|
|
|
748 |
|
749 |
-
class StyleEncoder(nn.Module):
|
750 |
-
def __init__(self, size, w_dim=512):
|
751 |
-
super().__init__()
|
752 |
-
|
753 |
-
channels = {
|
754 |
-
4: 512,
|
755 |
-
8: 512,
|
756 |
-
16: 512,
|
757 |
-
32: 512,
|
758 |
-
64: 256,
|
759 |
-
128: 128,
|
760 |
-
256: 64,
|
761 |
-
512: 32,
|
762 |
-
1024: 16
|
763 |
-
}
|
764 |
-
|
765 |
-
self.w_dim = w_dim
|
766 |
-
log_size = int(math.log(size, 2))
|
767 |
-
|
768 |
-
# self.n_latents = log_size*2 - 2
|
769 |
-
|
770 |
-
convs = [ConvLayer(3, channels[size], 1)]
|
771 |
-
|
772 |
-
in_channel = channels[size]
|
773 |
-
for i in range(log_size, 2, -1):
|
774 |
-
out_channel = channels[2 ** (i - 1)]
|
775 |
-
convs.append(ResBlock(in_channel, out_channel))
|
776 |
-
in_channel = out_channel
|
777 |
-
|
778 |
-
# convs.append(EqualConv2d(in_channel, self.n_latents*self.w_dim, 4, padding=0, bias=False))
|
779 |
-
convs.append(EqualConv2d(in_channel,2*self.w_dim, 4, padding=0, bias=False))
|
780 |
-
|
781 |
-
|
782 |
-
self.convs = nn.Sequential(*convs)
|
783 |
-
|
784 |
-
def forward(self, input):
|
785 |
-
out = self.convs(input)
|
786 |
-
# return out.view(len(input), self.n_latents, self.w_dim)
|
787 |
-
reshaped = out.view(len(input), 2*self.w_dim)
|
788 |
-
return reshaped[:,:self.w_dim], reshaped[:,self.w_dim:]
|
789 |
-
|
790 |
-
def kaiming_init(m):
|
791 |
-
if isinstance(m, (nn.Linear, nn.Conv2d)):
|
792 |
-
init.kaiming_normal_(m.weight)
|
793 |
-
if m.bias is not None:
|
794 |
-
m.bias.data.fill_(0)
|
795 |
-
elif isinstance(m, (nn.BatchNorm1d, nn.BatchNorm2d)):
|
796 |
-
m.weight.data.fill_(1)
|
797 |
-
if m.bias is not None:
|
798 |
-
m.bias.data.fill_(0)
|
799 |
-
|
800 |
-
|
801 |
-
def normal_init(m):
|
802 |
-
if isinstance(m, (nn.Linear, nn.Conv2d)):
|
803 |
-
init.normal_(m.weight, 0, 0.02)
|
804 |
-
if m.bias is not None:
|
805 |
-
m.bias.data.fill_(0)
|
806 |
-
elif isinstance(m, (nn.BatchNorm1d, nn.BatchNorm2d)):
|
807 |
-
m.weight.data.fill_(1)
|
808 |
-
if m.bias is not None:
|
809 |
-
m.bias.data.fill_(0)
|
|
|
|
|
|
|
1 |
import math
|
2 |
import random
|
3 |
import functools
|
4 |
import operator
|
5 |
+
import numpy as np
|
6 |
|
7 |
import torch
|
8 |
from torch import nn
|
9 |
from torch.nn import functional as F
|
|
|
10 |
from torch.autograd import Function
|
11 |
|
12 |
+
from op import FusedLeakyReLU, fused_leaky_relu, upfirdn2d
|
13 |
|
14 |
|
15 |
class PixelNorm(nn.Module):
|
|
|
37 |
|
38 |
self.factor = factor
|
39 |
kernel = make_kernel(kernel) * (factor ** 2)
|
40 |
+
self.register_buffer('kernel', kernel)
|
41 |
|
42 |
p = kernel.shape[0] - factor
|
43 |
|
|
|
58 |
|
59 |
self.factor = factor
|
60 |
kernel = make_kernel(kernel)
|
61 |
+
self.register_buffer('kernel', kernel)
|
62 |
|
63 |
p = kernel.shape[0] - factor
|
64 |
|
|
|
82 |
if upsample_factor > 1:
|
83 |
kernel = kernel * (upsample_factor ** 2)
|
84 |
|
85 |
+
self.register_buffer('kernel', kernel)
|
86 |
|
87 |
self.pad = pad
|
88 |
|
|
|
125 |
|
126 |
def __repr__(self):
|
127 |
return (
|
128 |
+
f'{self.__class__.__name__}({self.weight.shape[1]}, {self.weight.shape[0]},'
|
129 |
+
f' {self.weight.shape[2]}, stride={self.stride}, padding={self.padding})'
|
130 |
)
|
131 |
|
132 |
|
|
|
163 |
|
164 |
def __repr__(self):
|
165 |
return (
|
166 |
+
f'{self.__class__.__name__}({self.weight.shape[1]}, {self.weight.shape[0]})'
|
167 |
)
|
168 |
|
169 |
|
|
|
230 |
|
231 |
def __repr__(self):
|
232 |
return (
|
233 |
+
f'{self.__class__.__name__}({self.in_channel}, {self.out_channel}, {self.kernel_size}, '
|
234 |
+
f'upsample={self.upsample}, downsample={self.downsample})'
|
235 |
)
|
236 |
|
237 |
def forward(self, input, style):
|
|
|
354 |
|
355 |
def forward(self, input, style, skip=None):
|
356 |
out = self.conv(input, style)
|
357 |
+
style_modulated = out
|
358 |
out = out + self.bias
|
359 |
|
360 |
if skip is not None:
|
|
|
362 |
|
363 |
out = out + skip
|
364 |
|
365 |
+
return out, style_modulated
|
366 |
|
367 |
|
368 |
class Generator(nn.Module):
|
|
|
371 |
size,
|
372 |
style_dim,
|
373 |
n_mlp,
|
374 |
+
channel_multiplier=2,
|
375 |
blur_kernel=[1, 3, 3, 1],
|
376 |
lr_mlp=0.01,
|
|
|
|
|
377 |
):
|
378 |
super().__init__()
|
379 |
|
380 |
self.size = size
|
381 |
|
|
|
|
|
|
|
382 |
self.style_dim = style_dim
|
383 |
|
384 |
layers = [PixelNorm()]
|
|
|
386 |
for i in range(n_mlp):
|
387 |
layers.append(
|
388 |
EqualLinear(
|
389 |
+
style_dim, style_dim, lr_mul=lr_mlp, activation='fused_lrelu'
|
390 |
)
|
391 |
)
|
392 |
|
393 |
self.style = nn.Sequential(*layers)
|
394 |
|
395 |
+
self.channels = {
|
396 |
+
4: 512,
|
397 |
+
8: 512,
|
398 |
+
16: 512,
|
399 |
+
32: 512,
|
400 |
+
64: 256 * channel_multiplier,
|
401 |
+
128: 128 * channel_multiplier,
|
402 |
+
256: 64 * channel_multiplier,
|
403 |
+
512: 32 * channel_multiplier,
|
404 |
+
1024: 16 * channel_multiplier,
|
405 |
+
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
406 |
|
407 |
self.input = ConstantInput(self.channels[4])
|
408 |
self.conv1 = StyledConv(
|
|
|
423 |
for layer_idx in range(self.num_layers):
|
424 |
res = (layer_idx + 5) // 2
|
425 |
shape = [1, 1, 2 ** res, 2 ** res]
|
426 |
+
self.noises.register_buffer(f'noise_{layer_idx}', torch.randn(*shape))
|
|
|
|
|
427 |
|
428 |
for i in range(3, self.log_size + 1):
|
429 |
out_channel = self.channels[2 ** i]
|
|
|
451 |
|
452 |
self.n_latent = self.log_size * 2 - 2
|
453 |
|
454 |
+
@property
|
455 |
+
def device(self):
|
456 |
+
# TODO if multi-gpu is expected, could use the following more expensive version
|
457 |
+
#device, = list(set(p.device for p in self.parameters()))
|
458 |
+
return next(self.parameters()).device
|
459 |
+
|
460 |
+
@staticmethod
|
461 |
+
def get_latent_size(size):
|
462 |
+
log_size = int(math.log(size, 2))
|
463 |
+
return log_size * 2 - 2
|
464 |
|
465 |
+
@staticmethod
|
466 |
+
def make_noise_by_size(size: int, device: torch.device):
|
467 |
+
log_size = int(math.log(size, 2))
|
468 |
noises = [torch.randn(1, 1, 2 ** 2, 2 ** 2, device=device)]
|
469 |
|
470 |
+
for i in range(3, log_size + 1):
|
471 |
for _ in range(2):
|
472 |
noises.append(torch.randn(1, 1, 2 ** i, 2 ** i, device=device))
|
473 |
|
474 |
return noises
|
475 |
|
476 |
+
|
477 |
+
def make_noise(self):
|
478 |
+
return self.make_noise_by_size(self.size, self.input.input.device)
|
479 |
+
|
480 |
def mean_latent(self, n_latent):
|
481 |
latent_in = torch.randn(
|
482 |
n_latent, self.style_dim, device=self.input.input.device
|
|
|
492 |
self,
|
493 |
styles,
|
494 |
return_latents=False,
|
|
|
495 |
inject_index=None,
|
496 |
truncation=1,
|
497 |
truncation_latent=None,
|
|
|
500 |
randomize_noise=True,
|
501 |
):
|
502 |
if not input_is_latent:
|
|
|
503 |
styles = [self.style(s) for s in styles]
|
504 |
+
|
505 |
if noise is None:
|
506 |
if randomize_noise:
|
507 |
noise = [None] * self.num_layers
|
508 |
else:
|
509 |
noise = [
|
510 |
+
getattr(self.noises, f'noise_{i}') for i in range(self.num_layers)
|
|
|
511 |
]
|
512 |
|
513 |
if truncation < 1:
|
|
|
519 |
)
|
520 |
|
521 |
styles = style_t
|
522 |
+
|
523 |
if len(styles) < 2:
|
524 |
inject_index = self.n_latent
|
525 |
+
|
526 |
if styles[0].ndim < 3:
|
527 |
latent = styles[0].unsqueeze(1).repeat(1, inject_index, 1)
|
528 |
+
|
529 |
else:
|
|
|
530 |
latent = styles[0]
|
|
|
531 |
|
532 |
else:
|
|
|
533 |
if inject_index is None:
|
534 |
+
inject_index = random.randint(1, self.n_latent - 1)
|
535 |
+
|
536 |
+
latent = styles[0].unsqueeze(1).repeat(1, inject_index, 1)
|
|
|
|
|
|
|
|
|
537 |
latent2 = styles[1].unsqueeze(1).repeat(1, self.n_latent - inject_index, 1)
|
538 |
|
539 |
latent = torch.cat([latent, latent2], 1)
|
540 |
|
|
|
541 |
out = self.input(latent)
|
|
|
542 |
out = self.conv1(out, latent[:, 0], noise=noise[0])
|
|
|
543 |
|
544 |
+
skip, rgb_mod = self.to_rgb1(out, latent[:, 1])
|
545 |
+
|
546 |
+
|
547 |
+
rgbs = [rgb_mod] # all but the last skip
|
548 |
i = 1
|
549 |
for conv1, conv2, noise1, noise2, to_rgb in zip(
|
550 |
self.convs[::2], self.convs[1::2], noise[1::2], noise[2::2], self.to_rgbs
|
551 |
):
|
552 |
out = conv1(out, latent[:, i], noise=noise1)
|
|
|
553 |
out = conv2(out, latent[:, i + 1], noise=noise2)
|
554 |
+
skip, rgb_mod = to_rgb(out, latent[:, i + 2], skip)
|
555 |
+
rgbs.append(rgb_mod)
|
|
|
556 |
|
557 |
i += 2
|
558 |
|
559 |
image = skip
|
560 |
|
561 |
if return_latents:
|
562 |
+
return image, latent, rgbs
|
563 |
+
|
|
|
564 |
else:
|
565 |
+
return image, None, rgbs
|
566 |
|
567 |
|
568 |
class ConvLayer(nn.Sequential):
|
|
|
635 |
return out
|
636 |
|
637 |
|
638 |
+
class Discriminator(nn.Module):
|
639 |
+
def __init__(self, size, channel_multiplier=2, blur_kernel=[1, 3, 3, 1]):
|
|
|
|
|
640 |
super().__init__()
|
641 |
|
642 |
+
channels = {
|
643 |
+
4: 512,
|
644 |
+
8: 512,
|
645 |
+
16: 512,
|
646 |
+
32: 512,
|
647 |
+
64: 256 * channel_multiplier,
|
648 |
+
128: 128 * channel_multiplier,
|
649 |
+
256: 64 * channel_multiplier,
|
650 |
+
512: 32 * channel_multiplier,
|
651 |
+
1024: 16 * channel_multiplier,
|
652 |
+
}
|
|
|
|
|
|
|
|
|
653 |
|
654 |
convs = [ConvLayer(3, channels[size], 1)]
|
655 |
|
|
|
671 |
|
672 |
self.final_conv = ConvLayer(in_channel + 1, channels[4], 3)
|
673 |
self.final_linear = nn.Sequential(
|
674 |
+
EqualLinear(channels[4] * 4 * 4, channels[4], activation='fused_lrelu'),
|
675 |
EqualLinear(channels[4], 1),
|
676 |
)
|
677 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
678 |
def forward(self, input):
|
679 |
+
out = self.convs(input)
|
680 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
681 |
batch, channel, height, width = out.shape
|
682 |
group = min(batch, self.stddev_group)
|
683 |
stddev = out.view(
|
|
|
689 |
out = torch.cat([out, stddev], 1)
|
690 |
|
691 |
out = self.final_conv(out)
|
692 |
+
|
|
|
693 |
out = out.view(batch, -1)
|
694 |
out = self.final_linear(out)
|
|
|
|
|
695 |
|
696 |
+
return out
|
697 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
models/__init__.py
ADDED
File without changes
|
models/degrade.py
ADDED
@@ -0,0 +1,122 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from argparse import (
|
2 |
+
ArgumentParser,
|
3 |
+
Namespace,
|
4 |
+
)
|
5 |
+
|
6 |
+
import torch
|
7 |
+
from torch import nn
|
8 |
+
from torch.nn import functional as F
|
9 |
+
|
10 |
+
from utils.misc import optional_string
|
11 |
+
|
12 |
+
from .gaussian_smoothing import GaussianSmoothing
|
13 |
+
|
14 |
+
|
15 |
+
class DegradeArguments:
|
16 |
+
@staticmethod
|
17 |
+
def add_arguments(parser: ArgumentParser):
|
18 |
+
parser.add_argument('--spectral_sensitivity', choices=["g", "b", "gb"], default="g",
|
19 |
+
help="Type of spectral sensitivity. g: grayscale (panchromatic), b: blue-sensitive, gb: green+blue (orthochromatic)")
|
20 |
+
parser.add_argument('--gaussian', type=float, default=0,
|
21 |
+
help="estimated blur radius in pixels of the input photo if it is scaled to 1024x1024")
|
22 |
+
|
23 |
+
@staticmethod
|
24 |
+
def to_string(args: Namespace) -> str:
|
25 |
+
return (
|
26 |
+
f"{args.spectral_sensitivity}"
|
27 |
+
+ optional_string(args.gaussian > 0, f"-G{args.gaussian}")
|
28 |
+
)
|
29 |
+
|
30 |
+
|
31 |
+
class CameraResponse(nn.Module):
|
32 |
+
def __init__(self):
|
33 |
+
super().__init__()
|
34 |
+
|
35 |
+
self.register_parameter("gamma", nn.Parameter(torch.ones(1)))
|
36 |
+
self.register_parameter("offset", nn.Parameter(torch.zeros(1)))
|
37 |
+
self.register_parameter("gain", nn.Parameter(torch.ones(1)))
|
38 |
+
|
39 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
40 |
+
x = torch.clamp(x, max=1, min=-1+1e-2)
|
41 |
+
x = (1 + x) * 0.5
|
42 |
+
x = self.offset + self.gain * torch.pow(x, self.gamma)
|
43 |
+
x = (x - 0.5) * 2
|
44 |
+
# b = torch.clamp(b, max=1, min=-1)
|
45 |
+
return x
|
46 |
+
|
47 |
+
|
48 |
+
class SpectralResponse(nn.Module):
|
49 |
+
# TODO: use enum instead for color mode
|
50 |
+
def __init__(self, spectral_sensitivity: str = 'b'):
|
51 |
+
assert spectral_sensitivity in ("g", "b", "gb"), f"spectral_sensitivity {spectral_sensitivity} is not implemented."
|
52 |
+
|
53 |
+
super().__init__()
|
54 |
+
|
55 |
+
self.spectral_sensitivity = spectral_sensitivity
|
56 |
+
|
57 |
+
if self.spectral_sensitivity == "g":
|
58 |
+
self.register_buffer("to_gray", torch.tensor([0.299, 0.587, 0.114]).reshape(1, -1, 1, 1))
|
59 |
+
|
60 |
+
def forward(self, rgb: torch.Tensor) -> torch.Tensor:
|
61 |
+
if self.spectral_sensitivity == "b":
|
62 |
+
x = rgb[:, -1:]
|
63 |
+
elif self.spectral_sensitivity == "gb":
|
64 |
+
x = (rgb[:, 1:2] + rgb[:, -1:]) * 0.5
|
65 |
+
else:
|
66 |
+
assert self.spectral_sensitivity == "g"
|
67 |
+
x = (rgb * self.to_gray).sum(dim=1, keepdim=True)
|
68 |
+
return x
|
69 |
+
|
70 |
+
|
71 |
+
class Downsample(nn.Module):
|
72 |
+
"""Antialiasing downsampling"""
|
73 |
+
def __init__(self, input_size: int, output_size: int, channels: int):
|
74 |
+
super().__init__()
|
75 |
+
if input_size % output_size == 0:
|
76 |
+
self.stride = input_size // output_size
|
77 |
+
self.grid = None
|
78 |
+
else:
|
79 |
+
self.stride = 1
|
80 |
+
step = input_size / output_size
|
81 |
+
x = torch.arange(output_size) * step
|
82 |
+
Y, X = torch.meshgrid(x, x)
|
83 |
+
grid = torch.stack((X, Y), dim=-1)
|
84 |
+
grid /= torch.Tensor((input_size - 1, input_size - 1)).view(1, 1, -1)
|
85 |
+
grid = grid * 2 - 1
|
86 |
+
self.register_buffer("grid", grid)
|
87 |
+
sigma = 0.5 * input_size / output_size
|
88 |
+
#print(f"{input_size} -> {output_size}: sigma={sigma}")
|
89 |
+
self.blur = GaussianSmoothing(channels, int(2 * (sigma * 2) + 1 + 0.5), sigma)
|
90 |
+
|
91 |
+
def forward(self, im: torch.Tensor):
|
92 |
+
out = self.blur(im, stride=self.stride)
|
93 |
+
if self.grid is not None:
|
94 |
+
out = F.grid_sample(out, self.grid[None].expand(im.shape[0], -1, -1, -1))
|
95 |
+
return out
|
96 |
+
|
97 |
+
|
98 |
+
|
99 |
+
class Degrade(nn.Module):
|
100 |
+
"""
|
101 |
+
Simulate the degradation of antique film
|
102 |
+
"""
|
103 |
+
def __init__(self, args:Namespace):
|
104 |
+
super().__init__()
|
105 |
+
self.srf = SpectralResponse(args.spectral_sensitivity)
|
106 |
+
self.crf = CameraResponse()
|
107 |
+
self.gaussian = None
|
108 |
+
if args.gaussian is not None and args.gaussian > 0:
|
109 |
+
self.gaussian = GaussianSmoothing(3, 2 * int(args.gaussian * 2 + 0.5) + 1, args.gaussian)
|
110 |
+
|
111 |
+
def forward(self, img: torch.Tensor, downsample: nn.Module = None):
|
112 |
+
if self.gaussian is not None:
|
113 |
+
img = self.gaussian(img)
|
114 |
+
if downsample is not None:
|
115 |
+
img = downsample(img)
|
116 |
+
img = self.srf(img)
|
117 |
+
img = self.crf(img)
|
118 |
+
# Note that I changed it back to 3 channels
|
119 |
+
return img.repeat((1, 3, 1, 1)) if img.shape[1] == 1 else img
|
120 |
+
|
121 |
+
|
122 |
+
|
models/encoder.py
ADDED
@@ -0,0 +1,66 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from argparse import Namespace, ArgumentParser
|
2 |
+
from functools import partial
|
3 |
+
|
4 |
+
from torch import nn
|
5 |
+
|
6 |
+
from .resnet import ResNetBasicBlock, activation_func, norm_module, Conv2dAuto
|
7 |
+
|
8 |
+
|
9 |
+
def add_arguments(parser: ArgumentParser) -> ArgumentParser:
|
10 |
+
parser.add_argument("--latent_size", type=int, default=512, help="latent size")
|
11 |
+
return parser
|
12 |
+
|
13 |
+
|
14 |
+
def create_model(args) -> nn.Module:
|
15 |
+
in_channels = 3 if "rgb" in args and args.rgb else 1
|
16 |
+
return Encoder(in_channels, args.encoder_size, latent_size=args.latent_size)
|
17 |
+
|
18 |
+
|
19 |
+
class Flatten(nn.Module):
|
20 |
+
def forward(self, input_):
|
21 |
+
return input_.view(input_.size(0), -1)
|
22 |
+
|
23 |
+
|
24 |
+
class Encoder(nn.Module):
|
25 |
+
def __init__(
|
26 |
+
self, in_channels: int, size: int, latent_size: int = 512,
|
27 |
+
activation: str = 'leaky_relu', norm: str = "instance"
|
28 |
+
):
|
29 |
+
super().__init__()
|
30 |
+
|
31 |
+
out_channels0 = 64
|
32 |
+
norm_m = norm_module(norm)
|
33 |
+
self.conv0 = nn.Sequential(
|
34 |
+
Conv2dAuto(in_channels, out_channels0, kernel_size=5),
|
35 |
+
norm_m(out_channels0),
|
36 |
+
activation_func(activation),
|
37 |
+
)
|
38 |
+
|
39 |
+
pool_kernel = 2
|
40 |
+
self.pool = nn.AvgPool2d(pool_kernel)
|
41 |
+
|
42 |
+
num_channels = [128, 256, 512, 512]
|
43 |
+
# FIXME: this is a hack
|
44 |
+
if size >= 256:
|
45 |
+
num_channels.append(512)
|
46 |
+
|
47 |
+
residual = partial(ResNetBasicBlock, activation=activation, norm=norm, bias=True)
|
48 |
+
residual_blocks = nn.ModuleList()
|
49 |
+
for in_channel, out_channel in zip([out_channels0] + num_channels[:-1], num_channels):
|
50 |
+
residual_blocks.append(residual(in_channel, out_channel))
|
51 |
+
residual_blocks.append(nn.AvgPool2d(pool_kernel))
|
52 |
+
self.residual_blocks = nn.Sequential(*residual_blocks)
|
53 |
+
|
54 |
+
self.last = nn.Sequential(
|
55 |
+
nn.ReLU(),
|
56 |
+
nn.AvgPool2d(4), # TODO: not sure whehter this would cause problem
|
57 |
+
Flatten(),
|
58 |
+
nn.Linear(num_channels[-1], latent_size, bias=True)
|
59 |
+
)
|
60 |
+
|
61 |
+
def forward(self, input_):
|
62 |
+
out = self.conv0(input_)
|
63 |
+
out = self.pool(out)
|
64 |
+
out = self.residual_blocks(out)
|
65 |
+
out = self.last(out)
|
66 |
+
return out
|
models/gaussian_smoothing.py
ADDED
@@ -0,0 +1,74 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
import numbers
|
3 |
+
import torch
|
4 |
+
from torch import nn
|
5 |
+
from torch.nn import functional as F
|
6 |
+
|
7 |
+
|
8 |
+
class GaussianSmoothing(nn.Module):
|
9 |
+
"""
|
10 |
+
Apply gaussian smoothing on a
|
11 |
+
1d, 2d or 3d tensor. Filtering is performed seperately for each channel
|
12 |
+
in the input using a depthwise convolution.
|
13 |
+
Arguments:
|
14 |
+
channels (int, sequence): Number of channels of the input tensors. Output will
|
15 |
+
have this number of channels as well.
|
16 |
+
kernel_size (int, sequence): Size of the gaussian kernel.
|
17 |
+
sigma (float, sequence): Standard deviation of the gaussian kernel.
|
18 |
+
dim (int, optional): The number of dimensions of the data.
|
19 |
+
Default value is 2 (spatial).
|
20 |
+
"""
|
21 |
+
def __init__(self, channels, kernel_size, sigma, dim=2):
|
22 |
+
super(GaussianSmoothing, self).__init__()
|
23 |
+
if isinstance(kernel_size, numbers.Number):
|
24 |
+
kernel_size = [kernel_size] * dim
|
25 |
+
if isinstance(sigma, numbers.Number):
|
26 |
+
sigma = [sigma] * dim
|
27 |
+
|
28 |
+
# The gaussian kernel is the product of the
|
29 |
+
# gaussian function of each dimension.
|
30 |
+
kernel = 1
|
31 |
+
meshgrids = torch.meshgrid(
|
32 |
+
[
|
33 |
+
torch.arange(size, dtype=torch.float32)
|
34 |
+
for size in kernel_size
|
35 |
+
]
|
36 |
+
)
|
37 |
+
for size, std, mgrid in zip(kernel_size, sigma, meshgrids):
|
38 |
+
mean = (size - 1) / 2
|
39 |
+
kernel *= 1 / (std * math.sqrt(2 * math.pi)) * \
|
40 |
+
torch.exp(-((mgrid - mean) / (2 * std)) ** 2)
|
41 |
+
|
42 |
+
# Make sure sum of values in gaussian kernel equals 1.
|
43 |
+
kernel = kernel / torch.sum(kernel)
|
44 |
+
|
45 |
+
# Reshape to depthwise convolutional weight
|
46 |
+
kernel = kernel.view(1, 1, *kernel.size())
|
47 |
+
kernel = kernel.repeat(channels, *[1] * (kernel.dim() - 1))
|
48 |
+
|
49 |
+
self.register_buffer('weight', kernel)
|
50 |
+
self.groups = channels
|
51 |
+
|
52 |
+
if dim == 1:
|
53 |
+
self.conv = F.conv1d
|
54 |
+
elif dim == 2:
|
55 |
+
self.conv = F.conv2d
|
56 |
+
elif dim == 3:
|
57 |
+
self.conv = F.conv3d
|
58 |
+
else:
|
59 |
+
raise RuntimeError(
|
60 |
+
'Only 1, 2 and 3 dimensions are supported. Received {}.'.format(dim)
|
61 |
+
)
|
62 |
+
|
63 |
+
def forward(self, input, stride: int = 1):
|
64 |
+
"""
|
65 |
+
Apply gaussian filter to input.
|
66 |
+
Arguments:
|
67 |
+
input (torch.Tensor): Input to apply gaussian filter on.
|
68 |
+
stride for applying conv
|
69 |
+
Returns:
|
70 |
+
filtered (torch.Tensor): Filtered output.
|
71 |
+
"""
|
72 |
+
padding = (self.weight.shape[-1] - 1) // 2
|
73 |
+
return self.conv(input, weight=self.weight, groups=self.groups, padding=padding, stride=stride)
|
74 |
+
|
models/resnet.py
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from functools import partial
|
2 |
+
|
3 |
+
from torch import nn
|
4 |
+
|
5 |
+
|
6 |
+
def activation_func(activation: str):
|
7 |
+
return nn.ModuleDict([
|
8 |
+
['relu', nn.ReLU(inplace=True)],
|
9 |
+
['leaky_relu', nn.LeakyReLU(negative_slope=0.01, inplace=True)],
|
10 |
+
['selu', nn.SELU(inplace=True)],
|
11 |
+
['none', nn.Identity()]
|
12 |
+
])[activation]
|
13 |
+
|
14 |
+
|
15 |
+
def norm_module(norm: str):
|
16 |
+
return {
|
17 |
+
'batch': nn.BatchNorm2d,
|
18 |
+
'instance': nn.InstanceNorm2d,
|
19 |
+
}[norm]
|
20 |
+
|
21 |
+
|
22 |
+
class Conv2dAuto(nn.Conv2d):
|
23 |
+
def __init__(self, *args, **kwargs):
|
24 |
+
super().__init__(*args, **kwargs)
|
25 |
+
# dynamic add padding based on the kernel_size
|
26 |
+
self.padding = (self.kernel_size[0] // 2, self.kernel_size[1] // 2)
|
27 |
+
|
28 |
+
|
29 |
+
conv3x3 = partial(Conv2dAuto, kernel_size=3)
|
30 |
+
|
31 |
+
|
32 |
+
class ResidualBlock(nn.Module):
|
33 |
+
def __init__(self, in_channels: int, out_channels: int, activation: str = 'relu'):
|
34 |
+
super().__init__()
|
35 |
+
self.in_channels, self.out_channels = in_channels, out_channels
|
36 |
+
self.blocks = nn.Identity()
|
37 |
+
self.activate = activation_func(activation)
|
38 |
+
self.shortcut = nn.Identity()
|
39 |
+
|
40 |
+
def forward(self, x):
|
41 |
+
residual = x
|
42 |
+
if self.should_apply_shortcut:
|
43 |
+
residual = self.shortcut(x)
|
44 |
+
x = self.blocks(x)
|
45 |
+
x += residual
|
46 |
+
x = self.activate(x)
|
47 |
+
return x
|
48 |
+
|
49 |
+
@property
|
50 |
+
def should_apply_shortcut(self):
|
51 |
+
return self.in_channels != self.out_channels
|
52 |
+
|
53 |
+
|
54 |
+
class ResNetResidualBlock(ResidualBlock):
|
55 |
+
def __init__(
|
56 |
+
self, in_channels: int, out_channels: int,
|
57 |
+
expansion: int = 1, downsampling: int = 1,
|
58 |
+
conv=conv3x3, norm: str = 'batch', *args, **kwargs
|
59 |
+
):
|
60 |
+
super().__init__(in_channels, out_channels, *args, **kwargs)
|
61 |
+
self.expansion, self.downsampling = expansion, downsampling
|
62 |
+
self.conv, self.norm = conv, norm_module(norm)
|
63 |
+
self.shortcut = nn.Sequential(
|
64 |
+
nn.Conv2d(self.in_channels, self.expanded_channels, kernel_size=1,
|
65 |
+
stride=self.downsampling, bias=False),
|
66 |
+
self.norm(self.expanded_channels)) if self.should_apply_shortcut else None
|
67 |
+
|
68 |
+
@property
|
69 |
+
def expanded_channels(self):
|
70 |
+
return self.out_channels * self.expansion
|
71 |
+
|
72 |
+
@property
|
73 |
+
def should_apply_shortcut(self):
|
74 |
+
return self.in_channels != self.expanded_channels
|
75 |
+
|
76 |
+
|
77 |
+
def conv_norm(in_channels: int, out_channels: int, conv, norm, *args, **kwargs):
|
78 |
+
return nn.Sequential(conv(in_channels, out_channels, *args, **kwargs), norm(out_channels))
|
79 |
+
|
80 |
+
|
81 |
+
class ResNetBasicBlock(ResNetResidualBlock):
|
82 |
+
"""
|
83 |
+
Basic ResNet block composed by two layers of 3x3conv/batchnorm/activation
|
84 |
+
"""
|
85 |
+
expansion = 1
|
86 |
+
|
87 |
+
def __init__(
|
88 |
+
self, in_channels: int, out_channels: int, bias: bool = False, *args, **kwargs
|
89 |
+
):
|
90 |
+
super().__init__(in_channels, out_channels, *args, **kwargs)
|
91 |
+
self.blocks = nn.Sequential(
|
92 |
+
conv_norm(
|
93 |
+
self.in_channels, self.out_channels, conv=self.conv, norm=self.norm,
|
94 |
+
bias=bias, stride=self.downsampling
|
95 |
+
),
|
96 |
+
self.activate,
|
97 |
+
conv_norm(self.out_channels, self.expanded_channels, conv=self.conv, norm=self.norm, bias=bias),
|
98 |
+
)
|
99 |
+
|
models/vggface.py
ADDED
@@ -0,0 +1,150 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
import torch
|
3 |
+
import torch.nn as nn
|
4 |
+
|
5 |
+
|
6 |
+
class Vgg_face_dag(nn.Module):
|
7 |
+
|
8 |
+
def __init__(self):
|
9 |
+
super(Vgg_face_dag, self).__init__()
|
10 |
+
self.meta = {'mean': [129.186279296875, 104.76238250732422, 93.59396362304688],
|
11 |
+
'std': [1, 1, 1],
|
12 |
+
'imageSize': [224, 224, 3]}
|
13 |
+
self.conv1_1 = nn.Conv2d(3, 64, kernel_size=[3, 3], stride=(1, 1), padding=(1, 1))
|
14 |
+
self.relu1_1 = nn.ReLU(inplace=True)
|
15 |
+
self.conv1_2 = nn.Conv2d(64, 64, kernel_size=[3, 3], stride=(1, 1), padding=(1, 1))
|
16 |
+
self.relu1_2 = nn.ReLU(inplace=True)
|
17 |
+
self.pool1 = nn.MaxPool2d(kernel_size=[2, 2], stride=[2, 2], padding=0, dilation=1, ceil_mode=False)
|
18 |
+
self.conv2_1 = nn.Conv2d(64, 128, kernel_size=[3, 3], stride=(1, 1), padding=(1, 1))
|
19 |
+
self.relu2_1 = nn.ReLU(inplace=True)
|
20 |
+
self.conv2_2 = nn.Conv2d(128, 128, kernel_size=[3, 3], stride=(1, 1), padding=(1, 1))
|
21 |
+
self.relu2_2 = nn.ReLU(inplace=True)
|
22 |
+
self.pool2 = nn.MaxPool2d(kernel_size=[2, 2], stride=[2, 2], padding=0, dilation=1, ceil_mode=False)
|
23 |
+
self.conv3_1 = nn.Conv2d(128, 256, kernel_size=[3, 3], stride=(1, 1), padding=(1, 1))
|
24 |
+
self.relu3_1 = nn.ReLU(inplace=True)
|
25 |
+
self.conv3_2 = nn.Conv2d(256, 256, kernel_size=[3, 3], stride=(1, 1), padding=(1, 1))
|
26 |
+
self.relu3_2 = nn.ReLU(inplace=True)
|
27 |
+
self.conv3_3 = nn.Conv2d(256, 256, kernel_size=[3, 3], stride=(1, 1), padding=(1, 1))
|
28 |
+
self.relu3_3 = nn.ReLU(inplace=True)
|
29 |
+
self.pool3 = nn.MaxPool2d(kernel_size=[2, 2], stride=[2, 2], padding=0, dilation=1, ceil_mode=False)
|
30 |
+
self.conv4_1 = nn.Conv2d(256, 512, kernel_size=[3, 3], stride=(1, 1), padding=(1, 1))
|
31 |
+
self.relu4_1 = nn.ReLU(inplace=True)
|
32 |
+
self.conv4_2 = nn.Conv2d(512, 512, kernel_size=[3, 3], stride=(1, 1), padding=(1, 1))
|
33 |
+
self.relu4_2 = nn.ReLU(inplace=True)
|
34 |
+
self.conv4_3 = nn.Conv2d(512, 512, kernel_size=[3, 3], stride=(1, 1), padding=(1, 1))
|
35 |
+
self.relu4_3 = nn.ReLU(inplace=True)
|
36 |
+
self.pool4 = nn.MaxPool2d(kernel_size=[2, 2], stride=[2, 2], padding=0, dilation=1, ceil_mode=False)
|
37 |
+
self.conv5_1 = nn.Conv2d(512, 512, kernel_size=[3, 3], stride=(1, 1), padding=(1, 1))
|
38 |
+
self.relu5_1 = nn.ReLU(inplace=True)
|
39 |
+
self.conv5_2 = nn.Conv2d(512, 512, kernel_size=[3, 3], stride=(1, 1), padding=(1, 1))
|
40 |
+
self.relu5_2 = nn.ReLU(inplace=True)
|
41 |
+
self.conv5_3 = nn.Conv2d(512, 512, kernel_size=[3, 3], stride=(1, 1), padding=(1, 1))
|
42 |
+
self.relu5_3 = nn.ReLU(inplace=True)
|
43 |
+
self.pool5 = nn.MaxPool2d(kernel_size=[2, 2], stride=[2, 2], padding=0, dilation=1, ceil_mode=False)
|
44 |
+
self.fc6 = nn.Linear(in_features=25088, out_features=4096, bias=True)
|
45 |
+
self.relu6 = nn.ReLU(inplace=True)
|
46 |
+
self.dropout6 = nn.Dropout(p=0.5)
|
47 |
+
self.fc7 = nn.Linear(in_features=4096, out_features=4096, bias=True)
|
48 |
+
self.relu7 = nn.ReLU(inplace=True)
|
49 |
+
self.dropout7 = nn.Dropout(p=0.5)
|
50 |
+
self.fc8 = nn.Linear(in_features=4096, out_features=2622, bias=True)
|
51 |
+
|
52 |
+
def forward(self, x0):
|
53 |
+
x1 = self.conv1_1(x0)
|
54 |
+
x2 = self.relu1_1(x1)
|
55 |
+
x3 = self.conv1_2(x2)
|
56 |
+
x4 = self.relu1_2(x3)
|
57 |
+
x5 = self.pool1(x4)
|
58 |
+
x6 = self.conv2_1(x5)
|
59 |
+
x7 = self.relu2_1(x6)
|
60 |
+
x8 = self.conv2_2(x7)
|
61 |
+
x9 = self.relu2_2(x8)
|
62 |
+
x10 = self.pool2(x9)
|
63 |
+
x11 = self.conv3_1(x10)
|
64 |
+
x12 = self.relu3_1(x11)
|
65 |
+
x13 = self.conv3_2(x12)
|
66 |
+
x14 = self.relu3_2(x13)
|
67 |
+
x15 = self.conv3_3(x14)
|
68 |
+
x16 = self.relu3_3(x15)
|
69 |
+
x17 = self.pool3(x16)
|
70 |
+
x18 = self.conv4_1(x17)
|
71 |
+
x19 = self.relu4_1(x18)
|
72 |
+
x20 = self.conv4_2(x19)
|
73 |
+
x21 = self.relu4_2(x20)
|
74 |
+
x22 = self.conv4_3(x21)
|
75 |
+
x23 = self.relu4_3(x22)
|
76 |
+
x24 = self.pool4(x23)
|
77 |
+
x25 = self.conv5_1(x24)
|
78 |
+
x26 = self.relu5_1(x25)
|
79 |
+
x27 = self.conv5_2(x26)
|
80 |
+
x28 = self.relu5_2(x27)
|
81 |
+
x29 = self.conv5_3(x28)
|
82 |
+
x30 = self.relu5_3(x29)
|
83 |
+
x31_preflatten = self.pool5(x30)
|
84 |
+
x31 = x31_preflatten.view(x31_preflatten.size(0), -1)
|
85 |
+
x32 = self.fc6(x31)
|
86 |
+
x33 = self.relu6(x32)
|
87 |
+
x34 = self.dropout6(x33)
|
88 |
+
x35 = self.fc7(x34)
|
89 |
+
x36 = self.relu7(x35)
|
90 |
+
x37 = self.dropout7(x36)
|
91 |
+
x38 = self.fc8(x37)
|
92 |
+
return x38
|
93 |
+
|
94 |
+
|
95 |
+
def vgg_face_dag(weights_path=None, **kwargs):
|
96 |
+
"""
|
97 |
+
load imported model instance
|
98 |
+
|
99 |
+
Args:
|
100 |
+
weights_path (str): If set, loads model weights from the given path
|
101 |
+
"""
|
102 |
+
model = Vgg_face_dag()
|
103 |
+
if weights_path:
|
104 |
+
state_dict = torch.load(weights_path)
|
105 |
+
model.load_state_dict(state_dict)
|
106 |
+
return model
|
107 |
+
|
108 |
+
|
109 |
+
class VGGFaceFeats(Vgg_face_dag):
|
110 |
+
def forward(self, x0):
|
111 |
+
x1 = self.conv1_1(x0)
|
112 |
+
x2 = self.relu1_1(x1)
|
113 |
+
x3 = self.conv1_2(x2)
|
114 |
+
x4 = self.relu1_2(x3)
|
115 |
+
x5 = self.pool1(x4)
|
116 |
+
x6 = self.conv2_1(x5)
|
117 |
+
x7 = self.relu2_1(x6)
|
118 |
+
x8 = self.conv2_2(x7)
|
119 |
+
x9 = self.relu2_2(x8)
|
120 |
+
x10 = self.pool2(x9)
|
121 |
+
x11 = self.conv3_1(x10)
|
122 |
+
x12 = self.relu3_1(x11)
|
123 |
+
x13 = self.conv3_2(x12)
|
124 |
+
x14 = self.relu3_2(x13)
|
125 |
+
x15 = self.conv3_3(x14)
|
126 |
+
x16 = self.relu3_3(x15)
|
127 |
+
x17 = self.pool3(x16)
|
128 |
+
x18 = self.conv4_1(x17)
|
129 |
+
x19 = self.relu4_1(x18)
|
130 |
+
x20 = self.conv4_2(x19)
|
131 |
+
x21 = self.relu4_2(x20)
|
132 |
+
x22 = self.conv4_3(x21)
|
133 |
+
x23 = self.relu4_3(x22)
|
134 |
+
x24 = self.pool4(x23)
|
135 |
+
x25 = self.conv5_1(x24)
|
136 |
+
# x26 = self.relu5_1(x25)
|
137 |
+
# x27 = self.conv5_2(x26)
|
138 |
+
# x28 = self.relu5_2(x27)
|
139 |
+
# x29 = self.conv5_3(x28)
|
140 |
+
# x30 = self.relu5_3(x29)
|
141 |
+
# x31_preflatten = self.pool5(x30)
|
142 |
+
# x31 = x31_preflatten.view(x31_preflatten.size(0), -1)
|
143 |
+
# x32 = self.fc6(x31)
|
144 |
+
# x33 = self.relu6(x32)
|
145 |
+
# x34 = self.dropout6(x33)
|
146 |
+
# x35 = self.fc7(x34)
|
147 |
+
# x36 = self.relu7(x35)
|
148 |
+
# x37 = self.dropout7(x36)
|
149 |
+
# x38 = self.fc8(x37)
|
150 |
+
return x1, x6, x11, x18, x25
|
{torch_utils/op_edit β op}/__init__.py
RENAMED
@@ -1,4 +1,2 @@
|
|
1 |
-
# Copyright (c) SenseTime Research. All rights reserved.
|
2 |
-
|
3 |
from .fused_act import FusedLeakyReLU, fused_leaky_relu
|
4 |
from .upfirdn2d import upfirdn2d
|
|
|
|
|
|
|
1 |
from .fused_act import FusedLeakyReLU, fused_leaky_relu
|
2 |
from .upfirdn2d import upfirdn2d
|
{torch_utils/op_edit β op}/fused_act.py
RENAMED
@@ -1,20 +1,17 @@
|
|
1 |
-
# Copyright (c) SenseTime Research. All rights reserved.
|
2 |
-
|
3 |
import os
|
4 |
|
5 |
import torch
|
6 |
from torch import nn
|
7 |
-
from torch.nn import functional as F
|
8 |
from torch.autograd import Function
|
9 |
from torch.utils.cpp_extension import load
|
10 |
|
11 |
|
12 |
module_path = os.path.dirname(__file__)
|
13 |
fused = load(
|
14 |
-
|
15 |
sources=[
|
16 |
-
os.path.join(module_path,
|
17 |
-
os.path.join(module_path,
|
18 |
],
|
19 |
)
|
20 |
|
@@ -43,7 +40,7 @@ class FusedLeakyReLUFunctionBackward(Function):
|
|
43 |
|
44 |
@staticmethod
|
45 |
def backward(ctx, gradgrad_input, gradgrad_bias):
|
46 |
-
|
47 |
gradgrad_out = fused.fused_bias_act(
|
48 |
gradgrad_input, gradgrad_bias, out, 3, 1, ctx.negative_slope, ctx.scale
|
49 |
)
|
@@ -64,7 +61,7 @@ class FusedLeakyReLUFunction(Function):
|
|
64 |
|
65 |
@staticmethod
|
66 |
def backward(ctx, grad_output):
|
67 |
-
|
68 |
|
69 |
grad_input, grad_bias = FusedLeakyReLUFunctionBackward.apply(
|
70 |
grad_output, out, ctx.negative_slope, ctx.scale
|
@@ -86,14 +83,4 @@ class FusedLeakyReLU(nn.Module):
|
|
86 |
|
87 |
|
88 |
def fused_leaky_relu(input, bias, negative_slope=0.2, scale=2 ** 0.5):
|
89 |
-
|
90 |
-
rest_dim = [1] * (input.ndim - bias.ndim - 1)
|
91 |
-
return (
|
92 |
-
F.leaky_relu(
|
93 |
-
input + bias.view(1, bias.shape[0], *rest_dim), negative_slope=0.2
|
94 |
-
)
|
95 |
-
* scale
|
96 |
-
)
|
97 |
-
|
98 |
-
else:
|
99 |
-
return FusedLeakyReLUFunction.apply(input, bias, negative_slope, scale)
|
|
|
|
|
|
|
1 |
import os
|
2 |
|
3 |
import torch
|
4 |
from torch import nn
|
|
|
5 |
from torch.autograd import Function
|
6 |
from torch.utils.cpp_extension import load
|
7 |
|
8 |
|
9 |
module_path = os.path.dirname(__file__)
|
10 |
fused = load(
|
11 |
+
'fused',
|
12 |
sources=[
|
13 |
+
os.path.join(module_path, 'fused_bias_act.cpp'),
|
14 |
+
os.path.join(module_path, 'fused_bias_act_kernel.cu'),
|
15 |
],
|
16 |
)
|
17 |
|
|
|
40 |
|
41 |
@staticmethod
|
42 |
def backward(ctx, gradgrad_input, gradgrad_bias):
|
43 |
+
out, = ctx.saved_tensors
|
44 |
gradgrad_out = fused.fused_bias_act(
|
45 |
gradgrad_input, gradgrad_bias, out, 3, 1, ctx.negative_slope, ctx.scale
|
46 |
)
|
|
|
61 |
|
62 |
@staticmethod
|
63 |
def backward(ctx, grad_output):
|
64 |
+
out, = ctx.saved_tensors
|
65 |
|
66 |
grad_input, grad_bias = FusedLeakyReLUFunctionBackward.apply(
|
67 |
grad_output, out, ctx.negative_slope, ctx.scale
|
|
|
83 |
|
84 |
|
85 |
def fused_leaky_relu(input, bias, negative_slope=0.2, scale=2 ** 0.5):
|
86 |
+
return FusedLeakyReLUFunction.apply(input, bias, negative_slope, scale)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
{torch_utils/op_edit β op}/fused_bias_act.cpp
RENAMED
@@ -1,5 +1,3 @@
|
|
1 |
-
// Copyright (c) SenseTime Research. All rights reserved.
|
2 |
-
|
3 |
#include <torch/extension.h>
|
4 |
|
5 |
|
|
|
|
|
|
|
1 |
#include <torch/extension.h>
|
2 |
|
3 |
|
{torch_utils/op_edit β op}/fused_bias_act_kernel.cu
RENAMED
@@ -1,5 +1,3 @@
|
|
1 |
-
// Copyright (c) SenseTime Research. All rights reserved.
|
2 |
-
|
3 |
// Copyright (c) 2019, NVIDIA Corporation. All rights reserved.
|
4 |
//
|
5 |
// This work is made available under the Nvidia Source Code License-NC.
|
|
|
|
|
|
|
1 |
// Copyright (c) 2019, NVIDIA Corporation. All rights reserved.
|
2 |
//
|
3 |
// This work is made available under the Nvidia Source Code License-NC.
|
{torch_utils/op_edit β op}/upfirdn2d.cpp
RENAMED
@@ -1,5 +1,3 @@
|
|
1 |
-
// Copyright (c) SenseTime Research. All rights reserved.
|
2 |
-
|
3 |
#include <torch/extension.h>
|
4 |
|
5 |
|
|
|
|
|
|
|
1 |
#include <torch/extension.h>
|
2 |
|
3 |
|
{torch_utils/op_edit β op}/upfirdn2d.py
RENAMED
@@ -1,19 +1,16 @@
|
|
1 |
-
# Copyright (c) SenseTime Research. All rights reserved.
|
2 |
-
|
3 |
import os
|
4 |
|
5 |
import torch
|
6 |
-
from torch.nn import functional as F
|
7 |
from torch.autograd import Function
|
8 |
from torch.utils.cpp_extension import load
|
9 |
|
10 |
|
11 |
module_path = os.path.dirname(__file__)
|
12 |
upfirdn2d_op = load(
|
13 |
-
|
14 |
sources=[
|
15 |
-
os.path.join(module_path,
|
16 |
-
os.path.join(module_path,
|
17 |
],
|
18 |
)
|
19 |
|
@@ -63,7 +60,7 @@ class UpFirDn2dBackward(Function):
|
|
63 |
|
64 |
@staticmethod
|
65 |
def backward(ctx, gradgrad_input):
|
66 |
-
|
67 |
|
68 |
gradgrad_input = gradgrad_input.reshape(-1, ctx.in_size[2], ctx.in_size[3], 1)
|
69 |
|
@@ -145,15 +142,9 @@ class UpFirDn2d(Function):
|
|
145 |
|
146 |
|
147 |
def upfirdn2d(input, kernel, up=1, down=1, pad=(0, 0)):
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
)
|
152 |
-
|
153 |
-
else:
|
154 |
-
out = UpFirDn2d.apply(
|
155 |
-
input, kernel, (up, up), (down, down), (pad[0], pad[1], pad[0], pad[1])
|
156 |
-
)
|
157 |
|
158 |
return out
|
159 |
|
@@ -161,9 +152,6 @@ def upfirdn2d(input, kernel, up=1, down=1, pad=(0, 0)):
|
|
161 |
def upfirdn2d_native(
|
162 |
input, kernel, up_x, up_y, down_x, down_y, pad_x0, pad_x1, pad_y0, pad_y1
|
163 |
):
|
164 |
-
_, channel, in_h, in_w = input.shape
|
165 |
-
input = input.reshape(-1, in_h, in_w, 1)
|
166 |
-
|
167 |
_, in_h, in_w, minor = input.shape
|
168 |
kernel_h, kernel_w = kernel.shape
|
169 |
|
@@ -194,9 +182,6 @@ def upfirdn2d_native(
|
|
194 |
in_w * up_x + pad_x0 + pad_x1 - kernel_w + 1,
|
195 |
)
|
196 |
out = out.permute(0, 2, 3, 1)
|
197 |
-
out = out[:, ::down_y, ::down_x, :]
|
198 |
|
199 |
-
|
200 |
-
out_w = (in_w * up_x + pad_x0 + pad_x1 - kernel_w) // down_x + 1
|
201 |
|
202 |
-
return out.view(-1, channel, out_h, out_w)
|
|
|
|
|
|
|
1 |
import os
|
2 |
|
3 |
import torch
|
|
|
4 |
from torch.autograd import Function
|
5 |
from torch.utils.cpp_extension import load
|
6 |
|
7 |
|
8 |
module_path = os.path.dirname(__file__)
|
9 |
upfirdn2d_op = load(
|
10 |
+
'upfirdn2d',
|
11 |
sources=[
|
12 |
+
os.path.join(module_path, 'upfirdn2d.cpp'),
|
13 |
+
os.path.join(module_path, 'upfirdn2d_kernel.cu'),
|
14 |
],
|
15 |
)
|
16 |
|
|
|
60 |
|
61 |
@staticmethod
|
62 |
def backward(ctx, gradgrad_input):
|
63 |
+
kernel, = ctx.saved_tensors
|
64 |
|
65 |
gradgrad_input = gradgrad_input.reshape(-1, ctx.in_size[2], ctx.in_size[3], 1)
|
66 |
|
|
|
142 |
|
143 |
|
144 |
def upfirdn2d(input, kernel, up=1, down=1, pad=(0, 0)):
|
145 |
+
out = UpFirDn2d.apply(
|
146 |
+
input, kernel, (up, up), (down, down), (pad[0], pad[1], pad[0], pad[1])
|
147 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
148 |
|
149 |
return out
|
150 |
|
|
|
152 |
def upfirdn2d_native(
|
153 |
input, kernel, up_x, up_y, down_x, down_y, pad_x0, pad_x1, pad_y0, pad_y1
|
154 |
):
|
|
|
|
|
|
|
155 |
_, in_h, in_w, minor = input.shape
|
156 |
kernel_h, kernel_w = kernel.shape
|
157 |
|
|
|
182 |
in_w * up_x + pad_x0 + pad_x1 - kernel_w + 1,
|
183 |
)
|
184 |
out = out.permute(0, 2, 3, 1)
|
|
|
185 |
|
186 |
+
return out[:, ::down_y, ::down_x, :]
|
|
|
187 |
|
|
op/upfirdn2d_kernel.cu
ADDED
@@ -0,0 +1,272 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
// Copyright (c) 2019, NVIDIA Corporation. All rights reserved.
|
2 |
+
//
|
3 |
+
// This work is made available under the Nvidia Source Code License-NC.
|
4 |
+
// To view a copy of this license, visit
|
5 |
+
// https://nvlabs.github.io/stylegan2/license.html
|
6 |
+
|
7 |
+
#include <torch/types.h>
|
8 |
+
|
9 |
+
#include <ATen/ATen.h>
|
10 |
+
#include <ATen/AccumulateType.h>
|
11 |
+
#include <ATen/cuda/CUDAContext.h>
|
12 |
+
#include <ATen/cuda/CUDAApplyUtils.cuh>
|
13 |
+
|
14 |
+
#include <cuda.h>
|
15 |
+
#include <cuda_runtime.h>
|
16 |
+
|
17 |
+
|
18 |
+
static __host__ __device__ __forceinline__ int floor_div(int a, int b) {
|
19 |
+
int c = a / b;
|
20 |
+
|
21 |
+
if (c * b > a) {
|
22 |
+
c--;
|
23 |
+
}
|
24 |
+
|
25 |
+
return c;
|
26 |
+
}
|
27 |
+
|
28 |
+
|
29 |
+
struct UpFirDn2DKernelParams {
|
30 |
+
int up_x;
|
31 |
+
int up_y;
|
32 |
+
int down_x;
|
33 |
+
int down_y;
|
34 |
+
int pad_x0;
|
35 |
+
int pad_x1;
|
36 |
+
int pad_y0;
|
37 |
+
int pad_y1;
|
38 |
+
|
39 |
+
int major_dim;
|
40 |
+
int in_h;
|
41 |
+
int in_w;
|
42 |
+
int minor_dim;
|
43 |
+
int kernel_h;
|
44 |
+
int kernel_w;
|
45 |
+
int out_h;
|
46 |
+
int out_w;
|
47 |
+
int loop_major;
|
48 |
+
int loop_x;
|
49 |
+
};
|
50 |
+
|
51 |
+
|
52 |
+
template <typename scalar_t, int up_x, int up_y, int down_x, int down_y, int kernel_h, int kernel_w, int tile_out_h, int tile_out_w>
|
53 |
+
__global__ void upfirdn2d_kernel(scalar_t* out, const scalar_t* input, const scalar_t* kernel, const UpFirDn2DKernelParams p) {
|
54 |
+
const int tile_in_h = ((tile_out_h - 1) * down_y + kernel_h - 1) / up_y + 1;
|
55 |
+
const int tile_in_w = ((tile_out_w - 1) * down_x + kernel_w - 1) / up_x + 1;
|
56 |
+
|
57 |
+
__shared__ volatile float sk[kernel_h][kernel_w];
|
58 |
+
__shared__ volatile float sx[tile_in_h][tile_in_w];
|
59 |
+
|
60 |
+
int minor_idx = blockIdx.x;
|
61 |
+
int tile_out_y = minor_idx / p.minor_dim;
|
62 |
+
minor_idx -= tile_out_y * p.minor_dim;
|
63 |
+
tile_out_y *= tile_out_h;
|
64 |
+
int tile_out_x_base = blockIdx.y * p.loop_x * tile_out_w;
|
65 |
+
int major_idx_base = blockIdx.z * p.loop_major;
|
66 |
+
|
67 |
+
if (tile_out_x_base >= p.out_w | tile_out_y >= p.out_h | major_idx_base >= p.major_dim) {
|
68 |
+
return;
|
69 |
+
}
|
70 |
+
|
71 |
+
for (int tap_idx = threadIdx.x; tap_idx < kernel_h * kernel_w; tap_idx += blockDim.x) {
|
72 |
+
int ky = tap_idx / kernel_w;
|
73 |
+
int kx = tap_idx - ky * kernel_w;
|
74 |
+
scalar_t v = 0.0;
|
75 |
+
|
76 |
+
if (kx < p.kernel_w & ky < p.kernel_h) {
|
77 |
+
v = kernel[(p.kernel_h - 1 - ky) * p.kernel_w + (p.kernel_w - 1 - kx)];
|
78 |
+
}
|
79 |
+
|
80 |
+
sk[ky][kx] = v;
|
81 |
+
}
|
82 |
+
|
83 |
+
for (int loop_major = 0, major_idx = major_idx_base; loop_major < p.loop_major & major_idx < p.major_dim; loop_major++, major_idx++) {
|
84 |
+
for (int loop_x = 0, tile_out_x = tile_out_x_base; loop_x < p.loop_x & tile_out_x < p.out_w; loop_x++, tile_out_x += tile_out_w) {
|
85 |
+
int tile_mid_x = tile_out_x * down_x + up_x - 1 - p.pad_x0;
|
86 |
+
int tile_mid_y = tile_out_y * down_y + up_y - 1 - p.pad_y0;
|
87 |
+
int tile_in_x = floor_div(tile_mid_x, up_x);
|
88 |
+
int tile_in_y = floor_div(tile_mid_y, up_y);
|
89 |
+
|
90 |
+
__syncthreads();
|
91 |
+
|
92 |
+
for (int in_idx = threadIdx.x; in_idx < tile_in_h * tile_in_w; in_idx += blockDim.x) {
|
93 |
+
int rel_in_y = in_idx / tile_in_w;
|
94 |
+
int rel_in_x = in_idx - rel_in_y * tile_in_w;
|
95 |
+
int in_x = rel_in_x + tile_in_x;
|
96 |
+
int in_y = rel_in_y + tile_in_y;
|
97 |
+
|
98 |
+
scalar_t v = 0.0;
|
99 |
+
|
100 |
+
if (in_x >= 0 & in_y >= 0 & in_x < p.in_w & in_y < p.in_h) {
|
101 |
+
v = input[((major_idx * p.in_h + in_y) * p.in_w + in_x) * p.minor_dim + minor_idx];
|
102 |
+
}
|
103 |
+
|
104 |
+
sx[rel_in_y][rel_in_x] = v;
|
105 |
+
}
|
106 |
+
|
107 |
+
__syncthreads();
|
108 |
+
for (int out_idx = threadIdx.x; out_idx < tile_out_h * tile_out_w; out_idx += blockDim.x) {
|
109 |
+
int rel_out_y = out_idx / tile_out_w;
|
110 |
+
int rel_out_x = out_idx - rel_out_y * tile_out_w;
|
111 |
+
int out_x = rel_out_x + tile_out_x;
|
112 |
+
int out_y = rel_out_y + tile_out_y;
|
113 |
+
|
114 |
+
int mid_x = tile_mid_x + rel_out_x * down_x;
|
115 |
+
int mid_y = tile_mid_y + rel_out_y * down_y;
|
116 |
+
int in_x = floor_div(mid_x, up_x);
|
117 |
+
int in_y = floor_div(mid_y, up_y);
|
118 |
+
int rel_in_x = in_x - tile_in_x;
|
119 |
+
int rel_in_y = in_y - tile_in_y;
|
120 |
+
int kernel_x = (in_x + 1) * up_x - mid_x - 1;
|
121 |
+
int kernel_y = (in_y + 1) * up_y - mid_y - 1;
|
122 |
+
|
123 |
+
scalar_t v = 0.0;
|
124 |
+
|
125 |
+
#pragma unroll
|
126 |
+
for (int y = 0; y < kernel_h / up_y; y++)
|
127 |
+
#pragma unroll
|
128 |
+
for (int x = 0; x < kernel_w / up_x; x++)
|
129 |
+
v += sx[rel_in_y + y][rel_in_x + x] * sk[kernel_y + y * up_y][kernel_x + x * up_x];
|
130 |
+
|
131 |
+
if (out_x < p.out_w & out_y < p.out_h) {
|
132 |
+
out[((major_idx * p.out_h + out_y) * p.out_w + out_x) * p.minor_dim + minor_idx] = v;
|
133 |
+
}
|
134 |
+
}
|
135 |
+
}
|
136 |
+
}
|
137 |
+
}
|
138 |
+
|
139 |
+
|
140 |
+
torch::Tensor upfirdn2d_op(const torch::Tensor& input, const torch::Tensor& kernel,
|
141 |
+
int up_x, int up_y, int down_x, int down_y,
|
142 |
+
int pad_x0, int pad_x1, int pad_y0, int pad_y1) {
|
143 |
+
int curDevice = -1;
|
144 |
+
cudaGetDevice(&curDevice);
|
145 |
+
cudaStream_t stream = at::cuda::getCurrentCUDAStream(curDevice);
|
146 |
+
|
147 |
+
UpFirDn2DKernelParams p;
|
148 |
+
|
149 |
+
auto x = input.contiguous();
|
150 |
+
auto k = kernel.contiguous();
|
151 |
+
|
152 |
+
p.major_dim = x.size(0);
|
153 |
+
p.in_h = x.size(1);
|
154 |
+
p.in_w = x.size(2);
|
155 |
+
p.minor_dim = x.size(3);
|
156 |
+
p.kernel_h = k.size(0);
|
157 |
+
p.kernel_w = k.size(1);
|
158 |
+
p.up_x = up_x;
|
159 |
+
p.up_y = up_y;
|
160 |
+
p.down_x = down_x;
|
161 |
+
p.down_y = down_y;
|
162 |
+
p.pad_x0 = pad_x0;
|
163 |
+
p.pad_x1 = pad_x1;
|
164 |
+
p.pad_y0 = pad_y0;
|
165 |
+
p.pad_y1 = pad_y1;
|
166 |
+
|
167 |
+
p.out_h = (p.in_h * p.up_y + p.pad_y0 + p.pad_y1 - p.kernel_h + p.down_y) / p.down_y;
|
168 |
+
p.out_w = (p.in_w * p.up_x + p.pad_x0 + p.pad_x1 - p.kernel_w + p.down_x) / p.down_x;
|
169 |
+
|
170 |
+
auto out = at::empty({p.major_dim, p.out_h, p.out_w, p.minor_dim}, x.options());
|
171 |
+
|
172 |
+
int mode = -1;
|
173 |
+
|
174 |
+
int tile_out_h;
|
175 |
+
int tile_out_w;
|
176 |
+
|
177 |
+
if (p.up_x == 1 && p.up_y == 1 && p.down_x == 1 && p.down_y == 1 && p.kernel_h <= 4 && p.kernel_w <= 4) {
|
178 |
+
mode = 1;
|
179 |
+
tile_out_h = 16;
|
180 |
+
tile_out_w = 64;
|
181 |
+
}
|
182 |
+
|
183 |
+
if (p.up_x == 1 && p.up_y == 1 && p.down_x == 1 && p.down_y == 1 && p.kernel_h <= 3 && p.kernel_w <= 3) {
|
184 |
+
mode = 2;
|
185 |
+
tile_out_h = 16;
|
186 |
+
tile_out_w = 64;
|
187 |
+
}
|
188 |
+
|
189 |
+
if (p.up_x == 2 && p.up_y == 2 && p.down_x == 1 && p.down_y == 1 && p.kernel_h <= 4 && p.kernel_w <= 4) {
|
190 |
+
mode = 3;
|
191 |
+
tile_out_h = 16;
|
192 |
+
tile_out_w = 64;
|
193 |
+
}
|
194 |
+
|
195 |
+
if (p.up_x == 2 && p.up_y == 2 && p.down_x == 1 && p.down_y == 1 && p.kernel_h <= 2 && p.kernel_w <= 2) {
|
196 |
+
mode = 4;
|
197 |
+
tile_out_h = 16;
|
198 |
+
tile_out_w = 64;
|
199 |
+
}
|
200 |
+
|
201 |
+
if (p.up_x == 1 && p.up_y == 1 && p.down_x == 2 && p.down_y == 2 && p.kernel_h <= 4 && p.kernel_w <= 4) {
|
202 |
+
mode = 5;
|
203 |
+
tile_out_h = 8;
|
204 |
+
tile_out_w = 32;
|
205 |
+
}
|
206 |
+
|
207 |
+
if (p.up_x == 1 && p.up_y == 1 && p.down_x == 2 && p.down_y == 2 && p.kernel_h <= 2 && p.kernel_w <= 2) {
|
208 |
+
mode = 6;
|
209 |
+
tile_out_h = 8;
|
210 |
+
tile_out_w = 32;
|
211 |
+
}
|
212 |
+
|
213 |
+
dim3 block_size;
|
214 |
+
dim3 grid_size;
|
215 |
+
|
216 |
+
if (tile_out_h > 0 && tile_out_w) {
|
217 |
+
p.loop_major = (p.major_dim - 1) / 16384 + 1;
|
218 |
+
p.loop_x = 1;
|
219 |
+
block_size = dim3(32 * 8, 1, 1);
|
220 |
+
grid_size = dim3(((p.out_h - 1) / tile_out_h + 1) * p.minor_dim,
|
221 |
+
(p.out_w - 1) / (p.loop_x * tile_out_w) + 1,
|
222 |
+
(p.major_dim - 1) / p.loop_major + 1);
|
223 |
+
}
|
224 |
+
|
225 |
+
AT_DISPATCH_FLOATING_TYPES_AND_HALF(x.scalar_type(), "upfirdn2d_cuda", [&] {
|
226 |
+
switch (mode) {
|
227 |
+
case 1:
|
228 |
+
upfirdn2d_kernel<scalar_t, 1, 1, 1, 1, 4, 4, 16, 64><<<grid_size, block_size, 0, stream>>>(
|
229 |
+
out.data_ptr<scalar_t>(), x.data_ptr<scalar_t>(), k.data_ptr<scalar_t>(), p
|
230 |
+
);
|
231 |
+
|
232 |
+
break;
|
233 |
+
|
234 |
+
case 2:
|
235 |
+
upfirdn2d_kernel<scalar_t, 1, 1, 1, 1, 3, 3, 16, 64><<<grid_size, block_size, 0, stream>>>(
|
236 |
+
out.data_ptr<scalar_t>(), x.data_ptr<scalar_t>(), k.data_ptr<scalar_t>(), p
|
237 |
+
);
|
238 |
+
|
239 |
+
break;
|
240 |
+
|
241 |
+
case 3:
|
242 |
+
upfirdn2d_kernel<scalar_t, 2, 2, 1, 1, 4, 4, 16, 64><<<grid_size, block_size, 0, stream>>>(
|
243 |
+
out.data_ptr<scalar_t>(), x.data_ptr<scalar_t>(), k.data_ptr<scalar_t>(), p
|
244 |
+
);
|
245 |
+
|
246 |
+
break;
|
247 |
+
|
248 |
+
case 4:
|
249 |
+
upfirdn2d_kernel<scalar_t, 2, 2, 1, 1, 2, 2, 16, 64><<<grid_size, block_size, 0, stream>>>(
|
250 |
+
out.data_ptr<scalar_t>(), x.data_ptr<scalar_t>(), k.data_ptr<scalar_t>(), p
|
251 |
+
);
|
252 |
+
|
253 |
+
break;
|
254 |
+
|
255 |
+
case 5:
|
256 |
+
upfirdn2d_kernel<scalar_t, 1, 1, 2, 2, 4, 4, 8, 32><<<grid_size, block_size, 0, stream>>>(
|
257 |
+
out.data_ptr<scalar_t>(), x.data_ptr<scalar_t>(), k.data_ptr<scalar_t>(), p
|
258 |
+
);
|
259 |
+
|
260 |
+
break;
|
261 |
+
|
262 |
+
case 6:
|
263 |
+
upfirdn2d_kernel<scalar_t, 1, 1, 2, 2, 4, 4, 8, 32><<<grid_size, block_size, 0, stream>>>(
|
264 |
+
out.data_ptr<scalar_t>(), x.data_ptr<scalar_t>(), k.data_ptr<scalar_t>(), p
|
265 |
+
);
|
266 |
+
|
267 |
+
break;
|
268 |
+
}
|
269 |
+
});
|
270 |
+
|
271 |
+
return out;
|
272 |
+
}
|
optim/__init__.py
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from torch.optim import Adam
|
2 |
+
from torch.optim.lbfgs import LBFGS
|
3 |
+
from .radam import RAdam
|
4 |
+
|
5 |
+
|
6 |
+
OPTIMIZER_MAP = {
|
7 |
+
"adam": Adam,
|
8 |
+
"radam": RAdam,
|
9 |
+
"lbfgs": LBFGS,
|
10 |
+
}
|
11 |
+
|
12 |
+
|
13 |
+
def get_optimizer_class(optimizer_name):
|
14 |
+
name = optimizer_name.lower()
|
15 |
+
return OPTIMIZER_MAP[name]
|
optim/radam.py
ADDED
@@ -0,0 +1,250 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
import torch
|
3 |
+
from torch.optim.optimizer import Optimizer, required
|
4 |
+
|
5 |
+
|
6 |
+
class RAdam(Optimizer):
|
7 |
+
|
8 |
+
def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, weight_decay=0, degenerated_to_sgd=True):
|
9 |
+
if not 0.0 <= lr:
|
10 |
+
raise ValueError("Invalid learning rate: {}".format(lr))
|
11 |
+
if not 0.0 <= eps:
|
12 |
+
raise ValueError("Invalid epsilon value: {}".format(eps))
|
13 |
+
if not 0.0 <= betas[0] < 1.0:
|
14 |
+
raise ValueError("Invalid beta parameter at index 0: {}".format(betas[0]))
|
15 |
+
if not 0.0 <= betas[1] < 1.0:
|
16 |
+
raise ValueError("Invalid beta parameter at index 1: {}".format(betas[1]))
|
17 |
+
|
18 |
+
self.degenerated_to_sgd = degenerated_to_sgd
|
19 |
+
if isinstance(params, (list, tuple)) and len(params) > 0 and isinstance(params[0], dict):
|
20 |
+
for param in params:
|
21 |
+
if 'betas' in param and (param['betas'][0] != betas[0] or param['betas'][1] != betas[1]):
|
22 |
+
param['buffer'] = [[None, None, None] for _ in range(10)]
|
23 |
+
defaults = dict(lr=lr, betas=betas, eps=eps, weight_decay=weight_decay,
|
24 |
+
buffer=[[None, None, None] for _ in range(10)])
|
25 |
+
super(RAdam, self).__init__(params, defaults)
|
26 |
+
|
27 |
+
def __setstate__(self, state):
|
28 |
+
super(RAdam, self).__setstate__(state)
|
29 |
+
|
30 |
+
def step(self, closure=None):
|
31 |
+
|
32 |
+
loss = None
|
33 |
+
if closure is not None:
|
34 |
+
loss = closure()
|
35 |
+
|
36 |
+
for group in self.param_groups:
|
37 |
+
|
38 |
+
for p in group['params']:
|
39 |
+
if p.grad is None:
|
40 |
+
continue
|
41 |
+
grad = p.grad.data.float()
|
42 |
+
if grad.is_sparse:
|
43 |
+
raise RuntimeError('RAdam does not support sparse gradients')
|
44 |
+
|
45 |
+
p_data_fp32 = p.data.float()
|
46 |
+
|
47 |
+
state = self.state[p]
|
48 |
+
|
49 |
+
if len(state) == 0:
|
50 |
+
state['step'] = 0
|
51 |
+
state['exp_avg'] = torch.zeros_like(p_data_fp32)
|
52 |
+
state['exp_avg_sq'] = torch.zeros_like(p_data_fp32)
|
53 |
+
else:
|
54 |
+
state['exp_avg'] = state['exp_avg'].type_as(p_data_fp32)
|
55 |
+
state['exp_avg_sq'] = state['exp_avg_sq'].type_as(p_data_fp32)
|
56 |
+
|
57 |
+
exp_avg, exp_avg_sq = state['exp_avg'], state['exp_avg_sq']
|
58 |
+
beta1, beta2 = group['betas']
|
59 |
+
|
60 |
+
exp_avg_sq.mul_(beta2).addcmul_(1 - beta2, grad, grad)
|
61 |
+
exp_avg.mul_(beta1).add_(1 - beta1, grad)
|
62 |
+
|
63 |
+
state['step'] += 1
|
64 |
+
buffered = group['buffer'][int(state['step'] % 10)]
|
65 |
+
if state['step'] == buffered[0]:
|
66 |
+
N_sma, step_size = buffered[1], buffered[2]
|
67 |
+
else:
|
68 |
+
buffered[0] = state['step']
|
69 |
+
beta2_t = beta2 ** state['step']
|
70 |
+
N_sma_max = 2 / (1 - beta2) - 1
|
71 |
+
N_sma = N_sma_max - 2 * state['step'] * beta2_t / (1 - beta2_t)
|
72 |
+
buffered[1] = N_sma
|
73 |
+
|
74 |
+
# more conservative since it's an approximated value
|
75 |
+
if N_sma >= 5:
|
76 |
+
step_size = math.sqrt(
|
77 |
+
(1 - beta2_t) * (N_sma - 4) / (N_sma_max - 4) * (N_sma - 2) / N_sma * N_sma_max / (
|
78 |
+
N_sma_max - 2)) / (1 - beta1 ** state['step'])
|
79 |
+
elif self.degenerated_to_sgd:
|
80 |
+
step_size = 1.0 / (1 - beta1 ** state['step'])
|
81 |
+
else:
|
82 |
+
step_size = -1
|
83 |
+
buffered[2] = step_size
|
84 |
+
|
85 |
+
# more conservative since it's an approximated value
|
86 |
+
if N_sma >= 5:
|
87 |
+
if group['weight_decay'] != 0:
|
88 |
+
p_data_fp32.add_(-group['weight_decay'] * group['lr'], p_data_fp32)
|
89 |
+
denom = exp_avg_sq.sqrt().add_(group['eps'])
|
90 |
+
p_data_fp32.addcdiv_(-step_size * group['lr'], exp_avg, denom)
|
91 |
+
p.data.copy_(p_data_fp32)
|
92 |
+
elif step_size > 0:
|
93 |
+
if group['weight_decay'] != 0:
|
94 |
+
p_data_fp32.add_(-group['weight_decay'] * group['lr'], p_data_fp32)
|
95 |
+
p_data_fp32.add_(-step_size * group['lr'], exp_avg)
|
96 |
+
p.data.copy_(p_data_fp32)
|
97 |
+
|
98 |
+
return loss
|
99 |
+
|
100 |
+
|
101 |
+
class PlainRAdam(Optimizer):
|
102 |
+
|
103 |
+
def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, weight_decay=0, degenerated_to_sgd=True):
|
104 |
+
if not 0.0 <= lr:
|
105 |
+
raise ValueError("Invalid learning rate: {}".format(lr))
|
106 |
+
if not 0.0 <= eps:
|
107 |
+
raise ValueError("Invalid epsilon value: {}".format(eps))
|
108 |
+
if not 0.0 <= betas[0] < 1.0:
|
109 |
+
raise ValueError("Invalid beta parameter at index 0: {}".format(betas[0]))
|
110 |
+
if not 0.0 <= betas[1] < 1.0:
|
111 |
+
raise ValueError("Invalid beta parameter at index 1: {}".format(betas[1]))
|
112 |
+
|
113 |
+
self.degenerated_to_sgd = degenerated_to_sgd
|
114 |
+
defaults = dict(lr=lr, betas=betas, eps=eps, weight_decay=weight_decay)
|
115 |
+
|
116 |
+
super(PlainRAdam, self).__init__(params, defaults)
|
117 |
+
|
118 |
+
def __setstate__(self, state):
|
119 |
+
super(PlainRAdam, self).__setstate__(state)
|
120 |
+
|
121 |
+
def step(self, closure=None):
|
122 |
+
|
123 |
+
loss = None
|
124 |
+
if closure is not None:
|
125 |
+
loss = closure()
|
126 |
+
|
127 |
+
for group in self.param_groups:
|
128 |
+
|
129 |
+
for p in group['params']:
|
130 |
+
if p.grad is None:
|
131 |
+
continue
|
132 |
+
grad = p.grad.data.float()
|
133 |
+
if grad.is_sparse:
|
134 |
+
raise RuntimeError('RAdam does not support sparse gradients')
|
135 |
+
|
136 |
+
p_data_fp32 = p.data.float()
|
137 |
+
|
138 |
+
state = self.state[p]
|
139 |
+
|
140 |
+
if len(state) == 0:
|
141 |
+
state['step'] = 0
|
142 |
+
state['exp_avg'] = torch.zeros_like(p_data_fp32)
|
143 |
+
state['exp_avg_sq'] = torch.zeros_like(p_data_fp32)
|
144 |
+
else:
|
145 |
+
state['exp_avg'] = state['exp_avg'].type_as(p_data_fp32)
|
146 |
+
state['exp_avg_sq'] = state['exp_avg_sq'].type_as(p_data_fp32)
|
147 |
+
|
148 |
+
exp_avg, exp_avg_sq = state['exp_avg'], state['exp_avg_sq']
|
149 |
+
beta1, beta2 = group['betas']
|
150 |
+
|
151 |
+
exp_avg_sq.mul_(beta2).addcmul_(1 - beta2, grad, grad)
|
152 |
+
exp_avg.mul_(beta1).add_(1 - beta1, grad)
|
153 |
+
|
154 |
+
state['step'] += 1
|
155 |
+
beta2_t = beta2 ** state['step']
|
156 |
+
N_sma_max = 2 / (1 - beta2) - 1
|
157 |
+
N_sma = N_sma_max - 2 * state['step'] * beta2_t / (1 - beta2_t)
|
158 |
+
|
159 |
+
# more conservative since it's an approximated value
|
160 |
+
if N_sma >= 5:
|
161 |
+
if group['weight_decay'] != 0:
|
162 |
+
p_data_fp32.add_(-group['weight_decay'] * group['lr'], p_data_fp32)
|
163 |
+
step_size = group['lr'] * math.sqrt(
|
164 |
+
(1 - beta2_t) * (N_sma - 4) / (N_sma_max - 4) * (N_sma - 2) / N_sma * N_sma_max / (
|
165 |
+
N_sma_max - 2)) / (1 - beta1 ** state['step'])
|
166 |
+
denom = exp_avg_sq.sqrt().add_(group['eps'])
|
167 |
+
p_data_fp32.addcdiv_(-step_size, exp_avg, denom)
|
168 |
+
p.data.copy_(p_data_fp32)
|
169 |
+
elif self.degenerated_to_sgd:
|
170 |
+
if group['weight_decay'] != 0:
|
171 |
+
p_data_fp32.add_(-group['weight_decay'] * group['lr'], p_data_fp32)
|
172 |
+
step_size = group['lr'] / (1 - beta1 ** state['step'])
|
173 |
+
p_data_fp32.add_(-step_size, exp_avg)
|
174 |
+
p.data.copy_(p_data_fp32)
|
175 |
+
|
176 |
+
return loss
|
177 |
+
|
178 |
+
|
179 |
+
class AdamW(Optimizer):
|
180 |
+
|
181 |
+
def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, weight_decay=0, warmup=0):
|
182 |
+
if not 0.0 <= lr:
|
183 |
+
raise ValueError("Invalid learning rate: {}".format(lr))
|
184 |
+
if not 0.0 <= eps:
|
185 |
+
raise ValueError("Invalid epsilon value: {}".format(eps))
|
186 |
+
if not 0.0 <= betas[0] < 1.0:
|
187 |
+
raise ValueError("Invalid beta parameter at index 0: {}".format(betas[0]))
|
188 |
+
if not 0.0 <= betas[1] < 1.0:
|
189 |
+
raise ValueError("Invalid beta parameter at index 1: {}".format(betas[1]))
|
190 |
+
|
191 |
+
defaults = dict(lr=lr, betas=betas, eps=eps,
|
192 |
+
weight_decay=weight_decay, warmup=warmup)
|
193 |
+
super(AdamW, self).__init__(params, defaults)
|
194 |
+
|
195 |
+
def __setstate__(self, state):
|
196 |
+
super(AdamW, self).__setstate__(state)
|
197 |
+
|
198 |
+
def step(self, closure=None):
|
199 |
+
loss = None
|
200 |
+
if closure is not None:
|
201 |
+
loss = closure()
|
202 |
+
|
203 |
+
for group in self.param_groups:
|
204 |
+
|
205 |
+
for p in group['params']:
|
206 |
+
if p.grad is None:
|
207 |
+
continue
|
208 |
+
grad = p.grad.data.float()
|
209 |
+
if grad.is_sparse:
|
210 |
+
raise RuntimeError('Adam does not support sparse gradients, please consider SparseAdam instead')
|
211 |
+
|
212 |
+
p_data_fp32 = p.data.float()
|
213 |
+
|
214 |
+
state = self.state[p]
|
215 |
+
|
216 |
+
if len(state) == 0:
|
217 |
+
state['step'] = 0
|
218 |
+
state['exp_avg'] = torch.zeros_like(p_data_fp32)
|
219 |
+
state['exp_avg_sq'] = torch.zeros_like(p_data_fp32)
|
220 |
+
else:
|
221 |
+
state['exp_avg'] = state['exp_avg'].type_as(p_data_fp32)
|
222 |
+
state['exp_avg_sq'] = state['exp_avg_sq'].type_as(p_data_fp32)
|
223 |
+
|
224 |
+
exp_avg, exp_avg_sq = state['exp_avg'], state['exp_avg_sq']
|
225 |
+
beta1, beta2 = group['betas']
|
226 |
+
|
227 |
+
state['step'] += 1
|
228 |
+
|
229 |
+
exp_avg_sq.mul_(beta2).addcmul_(1 - beta2, grad, grad)
|
230 |
+
exp_avg.mul_(beta1).add_(1 - beta1, grad)
|
231 |
+
|
232 |
+
denom = exp_avg_sq.sqrt().add_(group['eps'])
|
233 |
+
bias_correction1 = 1 - beta1 ** state['step']
|
234 |
+
bias_correction2 = 1 - beta2 ** state['step']
|
235 |
+
|
236 |
+
if group['warmup'] > state['step']:
|
237 |
+
scheduled_lr = 1e-8 + state['step'] * group['lr'] / group['warmup']
|
238 |
+
else:
|
239 |
+
scheduled_lr = group['lr']
|
240 |
+
|
241 |
+
step_size = scheduled_lr * math.sqrt(bias_correction2) / bias_correction1
|
242 |
+
|
243 |
+
if group['weight_decay'] != 0:
|
244 |
+
p_data_fp32.add_(-group['weight_decay'] * scheduled_lr, p_data_fp32)
|
245 |
+
|
246 |
+
p_data_fp32.addcdiv_(-step_size, exp_avg, denom)
|
247 |
+
|
248 |
+
p.data.copy_(p_data_fp32)
|
249 |
+
|
250 |
+
return loss
|
requirements.txt
CHANGED
@@ -1,5 +1,25 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Torch
|
2 |
+
#--find-links https://download.pytorch.org/whl/torch_stable.html
|
3 |
+
#torch==1.4.0+cu100
|
4 |
+
#torchvision==0.11.2+cu100
|
5 |
+
#torchaudio==0.10.1+cu100
|
6 |
+
#setuptools==59.5.0
|
7 |
+
|
8 |
+
Pillow
|
9 |
+
ninja
|
10 |
+
tqdm
|
11 |
+
opencv-python
|
12 |
+
scikit-image
|
13 |
+
numpy
|
14 |
+
|
15 |
+
tensorboard
|
16 |
+
|
17 |
+
# for face alignment
|
18 |
+
tensorflow
|
19 |
+
#keras
|
20 |
+
#bz2
|
21 |
+
dlib
|
22 |
+
scipy
|
23 |
+
|
24 |
+
matplotlib
|
25 |
+
pprintpp
|
scripts/download_checkpoints.sh
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
set -exo
|
2 |
+
|
3 |
+
mkdir -p checkpoint
|
4 |
+
gdown https://drive.google.com/uc?id=1hWc2JLM58_PkwfLG23Q5IH3Ysj2Mo1nr -O checkpoint/e4e_ffhq_encode.pt
|
5 |
+
gdown https://drive.google.com/uc?id=1hvAAql9Jo0wlmLBSHRIGrtXHcKQE-Whn -O checkpoint/stylegan2-ffhq-config-f.pt
|
6 |
+
gdown https://drive.google.com/uc?id=1mbGWbjivZxMGxZqyyOHbE310aOkYe2BR -O checkpoint/vgg_face_dag.pt
|
7 |
+
mkdir -p checkpoint/encoder
|
8 |
+
gdown https://drive.google.com/uc?id=1ha4WXsaIpZfMHsqNLvqOPlUXsgh9VawU -O checkpoint/encoder/checkpoint_b.pt
|
9 |
+
gdown https://drive.google.com/uc?id=1hfxDLujRIGU0G7pOdW9MMSBRzxZBmSKJ -O checkpoint/encoder/checkpoint_g.pt
|
10 |
+
gdown https://drive.google.com/uc?id=1htekHopgxaW-MIjs6pYy7pyIK0v7Q0iS -O checkpoint/encoder/checkpoint_gb.pt
|
11 |
+
|
12 |
+
pushd third_party/face_parsing
|
13 |
+
./scripts/download_checkpoints.sh
|
14 |
+
popd
|
scripts/install.sh
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# conda create -n stylegan python=3.7
|
2 |
+
# conda activate stylegan
|
3 |
+
conda install -c conda-forge/label/gcc7 opencv --yes
|
4 |
+
conda install tensorflow-gpu=1.15 cudatoolkit=10.0 --yes
|
5 |
+
conda install pytorch torchvision cudatoolkit=10.0 -c pytorch --yes
|
6 |
+
pip install -r requirements.txt
|
scripts/run.sh
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
set -x
|
2 |
+
|
3 |
+
# Example command
|
4 |
+
# ```
|
5 |
+
# ./scripts/run.sh b "dataset/Abraham Lincoln_01.png" 0.75
|
6 |
+
# ```
|
7 |
+
|
8 |
+
spectral_sensitivity="$1"
|
9 |
+
path="$2"
|
10 |
+
blur_radius="$3"
|
11 |
+
|
12 |
+
|
13 |
+
list="$(dirname "${path}")"
|
14 |
+
list="$(basename "${list}")"
|
15 |
+
|
16 |
+
if [ "${spectral_sensitivity}" == "b" ]; then
|
17 |
+
FLAGS=(--spectral_sensitivity b --encoder_ckpt checkpoint/encoder/checkpoint_b.pt);
|
18 |
+
elif [ "${spectral_sensitivity}" == "gb" ]; then
|
19 |
+
FLAGS=(--spectral_sensitivity "gb" --encoder_ckpt checkpoint/encoder/checkpoint_gb.pt);
|
20 |
+
else
|
21 |
+
FLAGS=(--spectral_sensitivity "g" --encoder_ckpt checkpoint/encoder/checkpoint_g.pt);
|
22 |
+
fi
|
23 |
+
|
24 |
+
name="${path%.*}"
|
25 |
+
name="${name##*/}"
|
26 |
+
echo "${name}"
|
27 |
+
|
28 |
+
# TODO: I did l2 or cos for contextual
|
29 |
+
time python projector.py \
|
30 |
+
"${path}" \
|
31 |
+
--gaussian "${blur_radius}" \
|
32 |
+
--log_dir "log/" \
|
33 |
+
--results_dir "results/" \
|
34 |
+
"${FLAGS[@]}"
|
tools/__init__.py
ADDED
File without changes
|
tools/data/__init__.py
ADDED
File without changes
|
tools/data/align_images.py
ADDED
@@ -0,0 +1,117 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import json
|
3 |
+
import os
|
4 |
+
from os.path import join as pjoin
|
5 |
+
import sys
|
6 |
+
import bz2
|
7 |
+
import numpy as np
|
8 |
+
import cv2
|
9 |
+
from tqdm import tqdm
|
10 |
+
from tensorflow.keras.utils import get_file
|
11 |
+
from utils.ffhq_dataset.face_alignment import image_align
|
12 |
+
from utils.ffhq_dataset.landmarks_detector import LandmarksDetector
|
13 |
+
|
14 |
+
LANDMARKS_MODEL_URL = 'http://dlib.net/files/shape_predictor_68_face_landmarks.dat.bz2'
|
15 |
+
|
16 |
+
|
17 |
+
def unpack_bz2(src_path):
|
18 |
+
data = bz2.BZ2File(src_path).read()
|
19 |
+
dst_path = src_path[:-4]
|
20 |
+
with open(dst_path, 'wb') as fp:
|
21 |
+
fp.write(data)
|
22 |
+
return dst_path
|
23 |
+
|
24 |
+
|
25 |
+
class SizePathMap(dict):
|
26 |
+
"""{size: {aligned_face_path0, aligned_face_path1, ...}, ...}"""
|
27 |
+
def add_item(self, size, path):
|
28 |
+
if size not in self:
|
29 |
+
self[size] = set()
|
30 |
+
self[size].add(path)
|
31 |
+
|
32 |
+
def get_sizes(self):
|
33 |
+
sizes = []
|
34 |
+
for key, paths in self.items():
|
35 |
+
sizes.extend([key,]*len(paths))
|
36 |
+
return sizes
|
37 |
+
|
38 |
+
def serialize(self):
|
39 |
+
result = {}
|
40 |
+
for key, paths in self.items():
|
41 |
+
result[key] = list(paths)
|
42 |
+
return result
|
43 |
+
|
44 |
+
|
45 |
+
def main(args):
|
46 |
+
landmarks_model_path = unpack_bz2(get_file('shape_predictor_68_face_landmarks.dat.bz2',
|
47 |
+
LANDMARKS_MODEL_URL, cache_subdir='temp'))
|
48 |
+
|
49 |
+
landmarks_detector = LandmarksDetector(landmarks_model_path)
|
50 |
+
face_sizes = SizePathMap()
|
51 |
+
raw_img_dir = args.raw_image_dir
|
52 |
+
img_names = [n for n in os.listdir(raw_img_dir) if os.path.isfile(pjoin(raw_img_dir, n))]
|
53 |
+
aligned_image_dir = args.aligned_image_dir
|
54 |
+
os.makedirs(aligned_image_dir, exist_ok=True)
|
55 |
+
pbar = tqdm(img_names)
|
56 |
+
for img_name in pbar:
|
57 |
+
pbar.set_description(img_name)
|
58 |
+
if os.path.splitext(img_name)[-1] == '.txt':
|
59 |
+
continue
|
60 |
+
raw_img_path = os.path.join(raw_img_dir, img_name)
|
61 |
+
try:
|
62 |
+
for i, face_landmarks in enumerate(landmarks_detector.get_landmarks(raw_img_path), start=1):
|
63 |
+
face_img_name = '%s_%02d.png' % (os.path.splitext(img_name)[0], i)
|
64 |
+
aligned_face_path = os.path.join(aligned_image_dir, face_img_name)
|
65 |
+
|
66 |
+
face_size = image_align(
|
67 |
+
raw_img_path, aligned_face_path, face_landmarks, resize=args.resize
|
68 |
+
)
|
69 |
+
face_sizes.add_item(face_size, aligned_face_path)
|
70 |
+
pbar.set_description(f"{img_name}: {face_size}")
|
71 |
+
|
72 |
+
if args.draw:
|
73 |
+
visual = LandmarksDetector.draw(cv2.imread(raw_img_path), face_landmarks)
|
74 |
+
cv2.imwrite(
|
75 |
+
pjoin(args.aligned_image_dir, os.path.splitext(face_img_name)[0] + "_landmarks.png"),
|
76 |
+
visual
|
77 |
+
)
|
78 |
+
except Exception as e:
|
79 |
+
print('[Error]', e, 'error happened when processing', raw_img_path)
|
80 |
+
|
81 |
+
print(args.raw_image_dir, ':')
|
82 |
+
sizes = face_sizes.get_sizes()
|
83 |
+
results = {
|
84 |
+
'mean_size': np.mean(sizes),
|
85 |
+
'num_faces_detected': len(sizes),
|
86 |
+
'num_images': len(img_names),
|
87 |
+
'sizes': sizes,
|
88 |
+
'size_path_dict': face_sizes.serialize(),
|
89 |
+
}
|
90 |
+
print('\t', results)
|
91 |
+
if args.out_stats is not None:
|
92 |
+
os.makedirs(os.path.dirname(args.out_stats), exist_ok=True)
|
93 |
+
with open(out_stats, 'w') as f:
|
94 |
+
json.dump(results, f)
|
95 |
+
|
96 |
+
|
97 |
+
def parse_args(args=None, namespace=None):
|
98 |
+
parser = argparse.ArgumentParser(description="""
|
99 |
+
Extracts and aligns all faces from images using DLib and a function from original FFHQ dataset preparation step
|
100 |
+
python align_images.py /raw_images /aligned_images
|
101 |
+
"""
|
102 |
+
)
|
103 |
+
parser.add_argument('raw_image_dir')
|
104 |
+
parser.add_argument('aligned_image_dir')
|
105 |
+
parser.add_argument('--resize',
|
106 |
+
help="True if want to resize to 1024",
|
107 |
+
action='store_true')
|
108 |
+
parser.add_argument('--draw',
|
109 |
+
help="True if want to visualize landmarks",
|
110 |
+
action='store_true')
|
111 |
+
parser.add_argument('--out_stats',
|
112 |
+
help="output_fn for statistics of faces", default=None)
|
113 |
+
return parser.parse_args(args=args, namespace=namespace)
|
114 |
+
|
115 |
+
|
116 |
+
if __name__ == "__main__":
|
117 |
+
main(parse_args())
|
tools/initialize.py
ADDED
@@ -0,0 +1,160 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from argparse import ArgumentParser, Namespace
|
2 |
+
from typing import (
|
3 |
+
List,
|
4 |
+
Tuple,
|
5 |
+
)
|
6 |
+
|
7 |
+
import numpy as np
|
8 |
+
from PIL import Image
|
9 |
+
import torch
|
10 |
+
from torch import nn
|
11 |
+
import torch.nn.functional as F
|
12 |
+
from torchvision.transforms import (
|
13 |
+
Compose,
|
14 |
+
Grayscale,
|
15 |
+
Resize,
|
16 |
+
ToTensor,
|
17 |
+
)
|
18 |
+
|
19 |
+
from models.encoder import Encoder
|
20 |
+
from models.encoder4editing import (
|
21 |
+
get_latents as get_e4e_latents,
|
22 |
+
setup_model as setup_e4e_model,
|
23 |
+
)
|
24 |
+
from utils.misc import (
|
25 |
+
optional_string,
|
26 |
+
iterable_to_str,
|
27 |
+
stem,
|
28 |
+
)
|
29 |
+
|
30 |
+
|
31 |
+
|
32 |
+
class ColorEncoderArguments:
|
33 |
+
def __init__(self):
|
34 |
+
parser = ArgumentParser("Encode an image via a feed-forward encoder")
|
35 |
+
|
36 |
+
self.add_arguments(parser)
|
37 |
+
|
38 |
+
self.parser = parser
|
39 |
+
|
40 |
+
@staticmethod
|
41 |
+
def add_arguments(parser: ArgumentParser):
|
42 |
+
parser.add_argument("--encoder_ckpt", default=None,
|
43 |
+
help="encoder checkpoint path. initialize w with encoder output if specified")
|
44 |
+
parser.add_argument("--encoder_size", type=int, default=256,
|
45 |
+
help="Resize to this size to pass as input to the encoder")
|
46 |
+
|
47 |
+
|
48 |
+
class InitializerArguments:
|
49 |
+
@classmethod
|
50 |
+
def add_arguments(cls, parser: ArgumentParser):
|
51 |
+
ColorEncoderArguments.add_arguments(parser)
|
52 |
+
cls.add_e4e_arguments(parser)
|
53 |
+
parser.add_argument("--mix_layer_range", default=[10, 18], type=int, nargs=2,
|
54 |
+
help="replace layers <start> to <end> in the e4e code by the color code")
|
55 |
+
|
56 |
+
parser.add_argument("--init_latent", default=None, help="path to init wp")
|
57 |
+
|
58 |
+
@staticmethod
|
59 |
+
def to_string(args: Namespace):
|
60 |
+
return (f"init{stem(args.init_latent).lstrip('0')[:10]}" if args.init_latent
|
61 |
+
else f"init({iterable_to_str(args.mix_layer_range)})")
|
62 |
+
#+ optional_string(args.init_noise > 0, f"-initN{args.init_noise}")
|
63 |
+
|
64 |
+
@staticmethod
|
65 |
+
def add_e4e_arguments(parser: ArgumentParser):
|
66 |
+
parser.add_argument("--e4e_ckpt", default='checkpoint/e4e_ffhq_encode.pt',
|
67 |
+
help="e4e checkpoint path.")
|
68 |
+
parser.add_argument("--e4e_size", type=int, default=256,
|
69 |
+
help="Resize to this size to pass as input to the e4e")
|
70 |
+
|
71 |
+
|
72 |
+
|
73 |
+
def create_color_encoder(args: Namespace):
|
74 |
+
encoder = Encoder(1, args.encoder_size, 512)
|
75 |
+
ckpt = torch.load(args.encoder_ckpt)
|
76 |
+
encoder.load_state_dict(ckpt["model"])
|
77 |
+
return encoder
|
78 |
+
|
79 |
+
|
80 |
+
def transform_input(img: Image):
|
81 |
+
tsfm = Compose([
|
82 |
+
Grayscale(),
|
83 |
+
Resize(args.encoder_size),
|
84 |
+
ToTensor(),
|
85 |
+
])
|
86 |
+
return tsfm(img)
|
87 |
+
|
88 |
+
|
89 |
+
def encode_color(imgs: torch.Tensor, args: Namespace) -> torch.Tensor:
|
90 |
+
assert args.encoder_size is not None
|
91 |
+
|
92 |
+
imgs = Resize(args.encoder_size)(imgs)
|
93 |
+
|
94 |
+
color_encoder = create_color_encoder(args).to(imgs.device)
|
95 |
+
color_encoder.eval()
|
96 |
+
with torch.no_grad():
|
97 |
+
latent = color_encoder(imgs)
|
98 |
+
return latent.detach()
|
99 |
+
|
100 |
+
|
101 |
+
def resize(imgs: torch.Tensor, size: int) -> torch.Tensor:
|
102 |
+
return F.interpolate(imgs, size=size, mode='bilinear')
|
103 |
+
|
104 |
+
|
105 |
+
class Initializer(nn.Module):
|
106 |
+
def __init__(self, args: Namespace):
|
107 |
+
super().__init__()
|
108 |
+
|
109 |
+
self.path = None
|
110 |
+
if args.init_latent is not None:
|
111 |
+
self.path = args.init_latent
|
112 |
+
return
|
113 |
+
|
114 |
+
|
115 |
+
assert args.encoder_size is not None
|
116 |
+
self.color_encoder = create_color_encoder(args)
|
117 |
+
self.color_encoder.eval()
|
118 |
+
self.color_encoder_size = args.encoder_size
|
119 |
+
|
120 |
+
self.e4e, e4e_opts = setup_e4e_model(args.e4e_ckpt)
|
121 |
+
assert 'cars_' not in e4e_opts.dataset_type
|
122 |
+
self.e4e.decoder.eval()
|
123 |
+
self.e4e.eval()
|
124 |
+
self.e4e_size = args.e4e_size
|
125 |
+
|
126 |
+
self.mix_layer_range = args.mix_layer_range
|
127 |
+
|
128 |
+
def encode_color(self, imgs: torch.Tensor) -> torch.Tensor:
|
129 |
+
"""
|
130 |
+
Get the color W code
|
131 |
+
"""
|
132 |
+
imgs = resize(imgs, self.color_encoder_size)
|
133 |
+
|
134 |
+
latent = self.color_encoder(imgs)
|
135 |
+
|
136 |
+
return latent
|
137 |
+
|
138 |
+
def encode_shape(self, imgs: torch.Tensor) -> torch.Tensor:
|
139 |
+
imgs = resize(imgs, self.e4e_size)
|
140 |
+
imgs = (imgs - 0.5) / 0.5
|
141 |
+
if imgs.shape[1] == 1: # 1 channel
|
142 |
+
imgs = imgs.repeat(1, 3, 1, 1)
|
143 |
+
return get_e4e_latents(self.e4e, imgs)
|
144 |
+
|
145 |
+
def load(self, device: torch.device):
|
146 |
+
latent_np = np.load(self.path)
|
147 |
+
return torch.tensor(latent_np, device=device)[None, ...]
|
148 |
+
|
149 |
+
def forward(self, imgs: torch.Tensor) -> torch.Tensor:
|
150 |
+
if self.path is not None:
|
151 |
+
return self.load(imgs.device)
|
152 |
+
|
153 |
+
shape_code = self.encode_shape(imgs)
|
154 |
+
color_code = self.encode_color(imgs)
|
155 |
+
|
156 |
+
# style mix
|
157 |
+
latent = shape_code
|
158 |
+
start, end = self.mix_layer_range
|
159 |
+
latent[:, start:end] = color_code
|
160 |
+
return latent
|