Spaces:
Runtime error
Runtime error
Update Time_TravelRephotography/model.py
Browse files
Time_TravelRephotography/model.py
CHANGED
@@ -9,7 +9,8 @@ from torch import nn
|
|
9 |
from torch.nn import functional as F
|
10 |
from torch.autograd import Function
|
11 |
|
12 |
-
from op import FusedLeakyReLU, fused_leaky_relu, upfirdn2d
|
|
|
13 |
|
14 |
|
15 |
class PixelNorm(nn.Module):
|
@@ -152,7 +153,7 @@ class EqualLinear(nn.Module):
|
|
152 |
def forward(self, input):
|
153 |
if self.activation:
|
154 |
out = F.linear(input, self.weight * self.scale)
|
155 |
-
out =
|
156 |
|
157 |
else:
|
158 |
out = F.linear(
|
@@ -331,7 +332,7 @@ class StyledConv(nn.Module):
|
|
331 |
self.noise = NoiseInjection()
|
332 |
# self.bias = nn.Parameter(torch.zeros(1, out_channel, 1, 1))
|
333 |
# self.activate = ScaledLeakyReLU(0.2)
|
334 |
-
self.activate =
|
335 |
|
336 |
def forward(self, input, style, noise=None):
|
337 |
out = self.conv(input, style)
|
@@ -606,7 +607,7 @@ class ConvLayer(nn.Sequential):
|
|
606 |
|
607 |
if activate:
|
608 |
if bias:
|
609 |
-
layers.append(
|
610 |
|
611 |
else:
|
612 |
layers.append(ScaledLeakyReLU(0.2))
|
|
|
9 |
from torch.nn import functional as F
|
10 |
from torch.autograd import Function
|
11 |
|
12 |
+
#from op import FusedLeakyReLU, fused_leaky_relu, upfirdn2d
|
13 |
+
from torch_utils.ops import bias_act, upfirdn2d
|
14 |
|
15 |
|
16 |
class PixelNorm(nn.Module):
|
|
|
153 |
def forward(self, input):
|
154 |
if self.activation:
|
155 |
out = F.linear(input, self.weight * self.scale)
|
156 |
+
out = bias_act(out)
|
157 |
|
158 |
else:
|
159 |
out = F.linear(
|
|
|
332 |
self.noise = NoiseInjection()
|
333 |
# self.bias = nn.Parameter(torch.zeros(1, out_channel, 1, 1))
|
334 |
# self.activate = ScaledLeakyReLU(0.2)
|
335 |
+
self.activate = bias_act(out_channel)
|
336 |
|
337 |
def forward(self, input, style, noise=None):
|
338 |
out = self.conv(input, style)
|
|
|
607 |
|
608 |
if activate:
|
609 |
if bias:
|
610 |
+
layers.append(bias_act(out_channel))
|
611 |
|
612 |
else:
|
613 |
layers.append(ScaledLeakyReLU(0.2))
|