Spaces:
Runtime error
Runtime error
import argparse | |
import json | |
import os | |
from os.path import join as pjoin | |
import sys | |
import bz2 | |
import numpy as np | |
import cv2 | |
from tqdm import tqdm | |
from tensorflow.keras.utils import get_file | |
from utils.ffhq_dataset.face_alignment import image_align | |
from utils.ffhq_dataset.landmarks_detector import LandmarksDetector | |
LANDMARKS_MODEL_URL = 'http://dlib.net/files/shape_predictor_68_face_landmarks.dat.bz2' | |
def unpack_bz2(src_path): | |
data = bz2.BZ2File(src_path).read() | |
dst_path = src_path[:-4] | |
with open(dst_path, 'wb') as fp: | |
fp.write(data) | |
return dst_path | |
class SizePathMap(dict): | |
"""{size: {aligned_face_path0, aligned_face_path1, ...}, ...}""" | |
def add_item(self, size, path): | |
if size not in self: | |
self[size] = set() | |
self[size].add(path) | |
def get_sizes(self): | |
sizes = [] | |
for key, paths in self.items(): | |
sizes.extend([key,]*len(paths)) | |
return sizes | |
def serialize(self): | |
result = {} | |
for key, paths in self.items(): | |
result[key] = list(paths) | |
return result | |
def main(args): | |
landmarks_model_path = unpack_bz2(get_file('shape_predictor_68_face_landmarks.dat.bz2', | |
LANDMARKS_MODEL_URL, cache_subdir='temp')) | |
landmarks_detector = LandmarksDetector(landmarks_model_path) | |
face_sizes = SizePathMap() | |
raw_img_dir = args.raw_image_dir | |
img_names = [n for n in os.listdir(raw_img_dir) if os.path.isfile(pjoin(raw_img_dir, n))] | |
aligned_image_dir = args.aligned_image_dir | |
os.makedirs(aligned_image_dir, exist_ok=True) | |
pbar = tqdm(img_names) | |
for img_name in pbar: | |
pbar.set_description(img_name) | |
if os.path.splitext(img_name)[-1] == '.txt': | |
continue | |
raw_img_path = os.path.join(raw_img_dir, img_name) | |
try: | |
for i, face_landmarks in enumerate(landmarks_detector.get_landmarks(raw_img_path), start=1): | |
face_img_name = '%s_%02d.png' % (os.path.splitext(img_name)[0], i) | |
aligned_face_path = os.path.join(aligned_image_dir, face_img_name) | |
face_size = image_align( | |
raw_img_path, aligned_face_path, face_landmarks, resize=args.resize | |
) | |
face_sizes.add_item(face_size, aligned_face_path) | |
pbar.set_description(f"{img_name}: {face_size}") | |
if args.draw: | |
visual = LandmarksDetector.draw(cv2.imread(raw_img_path), face_landmarks) | |
cv2.imwrite( | |
pjoin(args.aligned_image_dir, os.path.splitext(face_img_name)[0] + "_landmarks.png"), | |
visual | |
) | |
except Exception as e: | |
print('[Error]', e, 'error happened when processing', raw_img_path) | |
print(args.raw_image_dir, ':') | |
sizes = face_sizes.get_sizes() | |
results = { | |
'mean_size': np.mean(sizes), | |
'num_faces_detected': len(sizes), | |
'num_images': len(img_names), | |
'sizes': sizes, | |
'size_path_dict': face_sizes.serialize(), | |
} | |
print('\t', results) | |
if args.out_stats is not None: | |
os.makedirs(os.path.dirname(args.out_stats), exist_ok=True) | |
with open(out_stats, 'w') as f: | |
json.dump(results, f) | |
def parse_args(args=None, namespace=None): | |
parser = argparse.ArgumentParser(description=""" | |
Extracts and aligns all faces from images using DLib and a function from original FFHQ dataset preparation step | |
python align_images.py /raw_images /aligned_images | |
""" | |
) | |
parser.add_argument('raw_image_dir') | |
parser.add_argument('aligned_image_dir') | |
parser.add_argument('--resize', | |
help="True if want to resize to 1024", | |
action='store_true') | |
parser.add_argument('--draw', | |
help="True if want to visualize landmarks", | |
action='store_true') | |
parser.add_argument('--out_stats', | |
help="output_fn for statistics of faces", default=None) | |
return parser.parse_args(args=args, namespace=namespace) | |
if __name__ == "__main__": | |
main(parse_args()) | |