Spaces:
Runtime error
Runtime error
import argparse | |
import torch | |
from torch.nn import functional as F | |
import numpy as np | |
from tqdm import tqdm | |
import lpips | |
from model import Generator | |
def normalize(x): | |
return x / torch.sqrt(x.pow(2).sum(-1, keepdim=True)) | |
def slerp(a, b, t): | |
a = normalize(a) | |
b = normalize(b) | |
d = (a * b).sum(-1, keepdim=True) | |
p = t * torch.acos(d) | |
c = normalize(b - d * a) | |
d = a * torch.cos(p) + c * torch.sin(p) | |
return normalize(d) | |
def lerp(a, b, t): | |
return a + (b - a) * t | |
if __name__ == "__main__": | |
device = "cuda" | |
parser = argparse.ArgumentParser(description="Perceptual Path Length calculator") | |
parser.add_argument( | |
"--space", choices=["z", "w"], help="space that PPL calculated with" | |
) | |
parser.add_argument( | |
"--batch", type=int, default=64, help="batch size for the models" | |
) | |
parser.add_argument( | |
"--n_sample", | |
type=int, | |
default=5000, | |
help="number of the samples for calculating PPL", | |
) | |
parser.add_argument( | |
"--size", type=int, default=256, help="output image sizes of the generator" | |
) | |
parser.add_argument( | |
"--eps", type=float, default=1e-4, help="epsilon for numerical stability" | |
) | |
parser.add_argument( | |
"--crop", action="store_true", help="apply center crop to the images" | |
) | |
parser.add_argument( | |
"--sampling", | |
default="end", | |
choices=["end", "full"], | |
help="set endpoint sampling method", | |
) | |
parser.add_argument( | |
"ckpt", metavar="CHECKPOINT", help="path to the model checkpoints" | |
) | |
args = parser.parse_args() | |
latent_dim = 512 | |
ckpt = torch.load(args.ckpt) | |
g = Generator(args.size, latent_dim, 8).to(device) | |
g.load_state_dict(ckpt["g_ema"]) | |
g.eval() | |
percept = lpips.PerceptualLoss( | |
model="net-lin", net="vgg", use_gpu=device.startswith("cuda") | |
) | |
distances = [] | |
n_batch = args.n_sample // args.batch | |
resid = args.n_sample - (n_batch * args.batch) | |
batch_sizes = [args.batch] * n_batch + [resid] | |
with torch.no_grad(): | |
for batch in tqdm(batch_sizes): | |
noise = g.make_noise() | |
inputs = torch.randn([batch * 2, latent_dim], device=device) | |
if args.sampling == "full": | |
lerp_t = torch.rand(batch, device=device) | |
else: | |
lerp_t = torch.zeros(batch, device=device) | |
if args.space == "w": | |
latent = g.get_latent(inputs) | |
latent_t0, latent_t1 = latent[::2], latent[1::2] | |
latent_e0 = lerp(latent_t0, latent_t1, lerp_t[:, None]) | |
latent_e1 = lerp(latent_t0, latent_t1, lerp_t[:, None] + args.eps) | |
latent_e = torch.stack([latent_e0, latent_e1], 1).view(*latent.shape) | |
image, _ = g([latent_e], input_is_latent=True, noise=noise) | |
if args.crop: | |
c = image.shape[2] // 8 | |
image = image[:, :, c * 3 : c * 7, c * 2 : c * 6] | |
factor = image.shape[2] // 256 | |
if factor > 1: | |
image = F.interpolate( | |
image, size=(256, 256), mode="bilinear", align_corners=False | |
) | |
dist = percept(image[::2], image[1::2]).view(image.shape[0] // 2) / ( | |
args.eps ** 2 | |
) | |
distances.append(dist.to("cpu").numpy()) | |
distances = np.concatenate(distances, 0) | |
lo = np.percentile(distances, 1, interpolation="lower") | |
hi = np.percentile(distances, 99, interpolation="higher") | |
filtered_dist = np.extract( | |
np.logical_and(lo <= distances, distances <= hi), distances | |
) | |
print("ppl:", filtered_dist.mean()) | |