Spaces:
Runtime error
Runtime error
import argparse | |
import pickle | |
import os | |
import torch | |
from torch import nn | |
from torch.nn import functional as F | |
from torch.utils.data import DataLoader | |
from torchvision import transforms | |
from torchvision.models import inception_v3, Inception3 | |
import numpy as np | |
from tqdm import tqdm | |
from inception import InceptionV3 | |
from dataset import MultiResolutionDataset | |
class Inception3Feature(Inception3): | |
def forward(self, x): | |
if x.shape[2] != 299 or x.shape[3] != 299: | |
x = F.interpolate(x, size=(299, 299), mode="bilinear", align_corners=True) | |
x = self.Conv2d_1a_3x3(x) # 299 x 299 x 3 | |
x = self.Conv2d_2a_3x3(x) # 149 x 149 x 32 | |
x = self.Conv2d_2b_3x3(x) # 147 x 147 x 32 | |
x = F.max_pool2d(x, kernel_size=3, stride=2) # 147 x 147 x 64 | |
x = self.Conv2d_3b_1x1(x) # 73 x 73 x 64 | |
x = self.Conv2d_4a_3x3(x) # 73 x 73 x 80 | |
x = F.max_pool2d(x, kernel_size=3, stride=2) # 71 x 71 x 192 | |
x = self.Mixed_5b(x) # 35 x 35 x 192 | |
x = self.Mixed_5c(x) # 35 x 35 x 256 | |
x = self.Mixed_5d(x) # 35 x 35 x 288 | |
x = self.Mixed_6a(x) # 35 x 35 x 288 | |
x = self.Mixed_6b(x) # 17 x 17 x 768 | |
x = self.Mixed_6c(x) # 17 x 17 x 768 | |
x = self.Mixed_6d(x) # 17 x 17 x 768 | |
x = self.Mixed_6e(x) # 17 x 17 x 768 | |
x = self.Mixed_7a(x) # 17 x 17 x 768 | |
x = self.Mixed_7b(x) # 8 x 8 x 1280 | |
x = self.Mixed_7c(x) # 8 x 8 x 2048 | |
x = F.avg_pool2d(x, kernel_size=8) # 8 x 8 x 2048 | |
return x.view(x.shape[0], x.shape[1]) # 1 x 1 x 2048 | |
def load_patched_inception_v3(): | |
# inception = inception_v3(pretrained=True) | |
# inception_feat = Inception3Feature() | |
# inception_feat.load_state_dict(inception.state_dict()) | |
inception_feat = InceptionV3([3], normalize_input=False) | |
return inception_feat | |
def extract_features(loader, inception, device): | |
pbar = tqdm(loader) | |
feature_list = [] | |
for img in pbar: | |
img = img.to(device) | |
feature = inception(img)[0].view(img.shape[0], -1) | |
feature_list.append(feature.to("cpu")) | |
features = torch.cat(feature_list, 0) | |
return features | |
if __name__ == "__main__": | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
parser = argparse.ArgumentParser( | |
description="Calculate Inception v3 features for datasets" | |
) | |
parser.add_argument( | |
"--size", | |
type=int, | |
default=256, | |
help="image sizes used for embedding calculation", | |
) | |
parser.add_argument( | |
"--batch", default=64, type=int, help="batch size for inception networks" | |
) | |
parser.add_argument( | |
"--n_sample", | |
type=int, | |
default=50000, | |
help="number of samples used for embedding calculation", | |
) | |
parser.add_argument( | |
"--flip", action="store_true", help="apply random flipping to real images" | |
) | |
parser.add_argument("path", metavar="PATH", help="path to datset lmdb file") | |
args = parser.parse_args() | |
inception = load_patched_inception_v3() | |
inception = nn.DataParallel(inception).eval().to(device) | |
transform = transforms.Compose( | |
[ | |
transforms.RandomHorizontalFlip(p=0.5 if args.flip else 0), | |
transforms.ToTensor(), | |
transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5]), | |
] | |
) | |
dset = MultiResolutionDataset(args.path, transform=transform, resolution=args.size) | |
loader = DataLoader(dset, batch_size=args.batch, num_workers=4) | |
features = extract_features(loader, inception, device).numpy() | |
features = features[: args.n_sample] | |
print(f"extracted {features.shape[0]} features") | |
mean = np.mean(features, 0) | |
cov = np.cov(features, rowvar=False) | |
name = os.path.splitext(os.path.basename(args.path))[0] | |
with open(f"inception_{name}.pkl", "wb") as f: | |
pickle.dump({"mean": mean, "cov": cov, "size": args.size, "path": args.path}, f) | |