feng2022's picture
losses
4bf9ab0
raw
history blame
1.63 kB
from collections import namedtuple
import torch.nn as nn
import torchvision.models.vgg as vgg
class VGG19(nn.Module):
def __init__(self, requires_grad=False):
super(VGG19, self).__init__()
vgg_pretrained_features = vgg.vgg19(pretrained=True).features
self.slice1 = nn.Sequential()
self.slice2 = nn.Sequential()
self.slice3 = nn.Sequential()
self.slice4 = nn.Sequential()
self.slice5 = nn.Sequential()
for x in range(4):
self.slice1.add_module(str(x), vgg_pretrained_features[x])
for x in range(4, 9):
self.slice2.add_module(str(x), vgg_pretrained_features[x])
for x in range(9, 18):
self.slice3.add_module(str(x), vgg_pretrained_features[x])
for x in range(18, 27):
self.slice4.add_module(str(x), vgg_pretrained_features[x])
for x in range(27, 36):
self.slice5.add_module(str(x), vgg_pretrained_features[x])
if not requires_grad:
for param in self.parameters():
param.requires_grad = False
def forward(self, X):
h = self.slice1(X)
h_relu1_2 = h
h = self.slice2(h)
h_relu2_2 = h
h = self.slice3(h)
h_relu3_4 = h
h = self.slice4(h)
h_relu4_4 = h
h = self.slice5(h)
h_relu5_4 = h
vgg_outputs = namedtuple(
"VggOutputs", ['relu1_2', 'relu2_2',
'relu3_4', 'relu4_4', 'relu5_4'])
out = vgg_outputs(h_relu1_2, h_relu2_2,
h_relu3_4, h_relu4_4, h_relu5_4)
return out