Spaces:
Runtime error
Runtime error
import math | |
import torch | |
from torch.optim.optimizer import Optimizer, required | |
class RAdam(Optimizer): | |
def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, weight_decay=0, degenerated_to_sgd=True): | |
if not 0.0 <= lr: | |
raise ValueError("Invalid learning rate: {}".format(lr)) | |
if not 0.0 <= eps: | |
raise ValueError("Invalid epsilon value: {}".format(eps)) | |
if not 0.0 <= betas[0] < 1.0: | |
raise ValueError("Invalid beta parameter at index 0: {}".format(betas[0])) | |
if not 0.0 <= betas[1] < 1.0: | |
raise ValueError("Invalid beta parameter at index 1: {}".format(betas[1])) | |
self.degenerated_to_sgd = degenerated_to_sgd | |
if isinstance(params, (list, tuple)) and len(params) > 0 and isinstance(params[0], dict): | |
for param in params: | |
if 'betas' in param and (param['betas'][0] != betas[0] or param['betas'][1] != betas[1]): | |
param['buffer'] = [[None, None, None] for _ in range(10)] | |
defaults = dict(lr=lr, betas=betas, eps=eps, weight_decay=weight_decay, | |
buffer=[[None, None, None] for _ in range(10)]) | |
super(RAdam, self).__init__(params, defaults) | |
def __setstate__(self, state): | |
super(RAdam, self).__setstate__(state) | |
def step(self, closure=None): | |
loss = None | |
if closure is not None: | |
loss = closure() | |
for group in self.param_groups: | |
for p in group['params']: | |
if p.grad is None: | |
continue | |
grad = p.grad.data.float() | |
if grad.is_sparse: | |
raise RuntimeError('RAdam does not support sparse gradients') | |
p_data_fp32 = p.data.float() | |
state = self.state[p] | |
if len(state) == 0: | |
state['step'] = 0 | |
state['exp_avg'] = torch.zeros_like(p_data_fp32) | |
state['exp_avg_sq'] = torch.zeros_like(p_data_fp32) | |
else: | |
state['exp_avg'] = state['exp_avg'].type_as(p_data_fp32) | |
state['exp_avg_sq'] = state['exp_avg_sq'].type_as(p_data_fp32) | |
exp_avg, exp_avg_sq = state['exp_avg'], state['exp_avg_sq'] | |
beta1, beta2 = group['betas'] | |
exp_avg_sq.mul_(beta2).addcmul_(1 - beta2, grad, grad) | |
exp_avg.mul_(beta1).add_(1 - beta1, grad) | |
state['step'] += 1 | |
buffered = group['buffer'][int(state['step'] % 10)] | |
if state['step'] == buffered[0]: | |
N_sma, step_size = buffered[1], buffered[2] | |
else: | |
buffered[0] = state['step'] | |
beta2_t = beta2 ** state['step'] | |
N_sma_max = 2 / (1 - beta2) - 1 | |
N_sma = N_sma_max - 2 * state['step'] * beta2_t / (1 - beta2_t) | |
buffered[1] = N_sma | |
# more conservative since it's an approximated value | |
if N_sma >= 5: | |
step_size = math.sqrt( | |
(1 - beta2_t) * (N_sma - 4) / (N_sma_max - 4) * (N_sma - 2) / N_sma * N_sma_max / ( | |
N_sma_max - 2)) / (1 - beta1 ** state['step']) | |
elif self.degenerated_to_sgd: | |
step_size = 1.0 / (1 - beta1 ** state['step']) | |
else: | |
step_size = -1 | |
buffered[2] = step_size | |
# more conservative since it's an approximated value | |
if N_sma >= 5: | |
if group['weight_decay'] != 0: | |
p_data_fp32.add_(-group['weight_decay'] * group['lr'], p_data_fp32) | |
denom = exp_avg_sq.sqrt().add_(group['eps']) | |
p_data_fp32.addcdiv_(-step_size * group['lr'], exp_avg, denom) | |
p.data.copy_(p_data_fp32) | |
elif step_size > 0: | |
if group['weight_decay'] != 0: | |
p_data_fp32.add_(-group['weight_decay'] * group['lr'], p_data_fp32) | |
p_data_fp32.add_(-step_size * group['lr'], exp_avg) | |
p.data.copy_(p_data_fp32) | |
return loss | |
class PlainRAdam(Optimizer): | |
def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, weight_decay=0, degenerated_to_sgd=True): | |
if not 0.0 <= lr: | |
raise ValueError("Invalid learning rate: {}".format(lr)) | |
if not 0.0 <= eps: | |
raise ValueError("Invalid epsilon value: {}".format(eps)) | |
if not 0.0 <= betas[0] < 1.0: | |
raise ValueError("Invalid beta parameter at index 0: {}".format(betas[0])) | |
if not 0.0 <= betas[1] < 1.0: | |
raise ValueError("Invalid beta parameter at index 1: {}".format(betas[1])) | |
self.degenerated_to_sgd = degenerated_to_sgd | |
defaults = dict(lr=lr, betas=betas, eps=eps, weight_decay=weight_decay) | |
super(PlainRAdam, self).__init__(params, defaults) | |
def __setstate__(self, state): | |
super(PlainRAdam, self).__setstate__(state) | |
def step(self, closure=None): | |
loss = None | |
if closure is not None: | |
loss = closure() | |
for group in self.param_groups: | |
for p in group['params']: | |
if p.grad is None: | |
continue | |
grad = p.grad.data.float() | |
if grad.is_sparse: | |
raise RuntimeError('RAdam does not support sparse gradients') | |
p_data_fp32 = p.data.float() | |
state = self.state[p] | |
if len(state) == 0: | |
state['step'] = 0 | |
state['exp_avg'] = torch.zeros_like(p_data_fp32) | |
state['exp_avg_sq'] = torch.zeros_like(p_data_fp32) | |
else: | |
state['exp_avg'] = state['exp_avg'].type_as(p_data_fp32) | |
state['exp_avg_sq'] = state['exp_avg_sq'].type_as(p_data_fp32) | |
exp_avg, exp_avg_sq = state['exp_avg'], state['exp_avg_sq'] | |
beta1, beta2 = group['betas'] | |
exp_avg_sq.mul_(beta2).addcmul_(1 - beta2, grad, grad) | |
exp_avg.mul_(beta1).add_(1 - beta1, grad) | |
state['step'] += 1 | |
beta2_t = beta2 ** state['step'] | |
N_sma_max = 2 / (1 - beta2) - 1 | |
N_sma = N_sma_max - 2 * state['step'] * beta2_t / (1 - beta2_t) | |
# more conservative since it's an approximated value | |
if N_sma >= 5: | |
if group['weight_decay'] != 0: | |
p_data_fp32.add_(-group['weight_decay'] * group['lr'], p_data_fp32) | |
step_size = group['lr'] * math.sqrt( | |
(1 - beta2_t) * (N_sma - 4) / (N_sma_max - 4) * (N_sma - 2) / N_sma * N_sma_max / ( | |
N_sma_max - 2)) / (1 - beta1 ** state['step']) | |
denom = exp_avg_sq.sqrt().add_(group['eps']) | |
p_data_fp32.addcdiv_(-step_size, exp_avg, denom) | |
p.data.copy_(p_data_fp32) | |
elif self.degenerated_to_sgd: | |
if group['weight_decay'] != 0: | |
p_data_fp32.add_(-group['weight_decay'] * group['lr'], p_data_fp32) | |
step_size = group['lr'] / (1 - beta1 ** state['step']) | |
p_data_fp32.add_(-step_size, exp_avg) | |
p.data.copy_(p_data_fp32) | |
return loss | |
class AdamW(Optimizer): | |
def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, weight_decay=0, warmup=0): | |
if not 0.0 <= lr: | |
raise ValueError("Invalid learning rate: {}".format(lr)) | |
if not 0.0 <= eps: | |
raise ValueError("Invalid epsilon value: {}".format(eps)) | |
if not 0.0 <= betas[0] < 1.0: | |
raise ValueError("Invalid beta parameter at index 0: {}".format(betas[0])) | |
if not 0.0 <= betas[1] < 1.0: | |
raise ValueError("Invalid beta parameter at index 1: {}".format(betas[1])) | |
defaults = dict(lr=lr, betas=betas, eps=eps, | |
weight_decay=weight_decay, warmup=warmup) | |
super(AdamW, self).__init__(params, defaults) | |
def __setstate__(self, state): | |
super(AdamW, self).__setstate__(state) | |
def step(self, closure=None): | |
loss = None | |
if closure is not None: | |
loss = closure() | |
for group in self.param_groups: | |
for p in group['params']: | |
if p.grad is None: | |
continue | |
grad = p.grad.data.float() | |
if grad.is_sparse: | |
raise RuntimeError('Adam does not support sparse gradients, please consider SparseAdam instead') | |
p_data_fp32 = p.data.float() | |
state = self.state[p] | |
if len(state) == 0: | |
state['step'] = 0 | |
state['exp_avg'] = torch.zeros_like(p_data_fp32) | |
state['exp_avg_sq'] = torch.zeros_like(p_data_fp32) | |
else: | |
state['exp_avg'] = state['exp_avg'].type_as(p_data_fp32) | |
state['exp_avg_sq'] = state['exp_avg_sq'].type_as(p_data_fp32) | |
exp_avg, exp_avg_sq = state['exp_avg'], state['exp_avg_sq'] | |
beta1, beta2 = group['betas'] | |
state['step'] += 1 | |
exp_avg_sq.mul_(beta2).addcmul_(1 - beta2, grad, grad) | |
exp_avg.mul_(beta1).add_(1 - beta1, grad) | |
denom = exp_avg_sq.sqrt().add_(group['eps']) | |
bias_correction1 = 1 - beta1 ** state['step'] | |
bias_correction2 = 1 - beta2 ** state['step'] | |
if group['warmup'] > state['step']: | |
scheduled_lr = 1e-8 + state['step'] * group['lr'] / group['warmup'] | |
else: | |
scheduled_lr = group['lr'] | |
step_size = scheduled_lr * math.sqrt(bias_correction2) / bias_correction1 | |
if group['weight_decay'] != 0: | |
p_data_fp32.add_(-group['weight_decay'] * scheduled_lr, p_data_fp32) | |
p_data_fp32.addcdiv_(-step_size, exp_avg, denom) | |
p.data.copy_(p_data_fp32) | |
return loss |