feng2022's picture
time
f9827f9
raw
history blame
12.3 kB
import math
import random
import functools
import operator
import torch
from torch import nn
from torch.nn import functional as F
from torch.autograd import Function
from op import FusedLeakyReLU, fused_leaky_relu, upfirdn2d, conv2d_gradfix
from model import (
ModulatedConv2d,
StyledConv,
ConstantInput,
PixelNorm,
Upsample,
Downsample,
Blur,
EqualLinear,
ConvLayer,
)
def get_haar_wavelet(in_channels):
haar_wav_l = 1 / (2 ** 0.5) * torch.ones(1, 2)
haar_wav_h = 1 / (2 ** 0.5) * torch.ones(1, 2)
haar_wav_h[0, 0] = -1 * haar_wav_h[0, 0]
haar_wav_ll = haar_wav_l.T * haar_wav_l
haar_wav_lh = haar_wav_h.T * haar_wav_l
haar_wav_hl = haar_wav_l.T * haar_wav_h
haar_wav_hh = haar_wav_h.T * haar_wav_h
return haar_wav_ll, haar_wav_lh, haar_wav_hl, haar_wav_hh
def dwt_init(x):
x01 = x[:, :, 0::2, :] / 2
x02 = x[:, :, 1::2, :] / 2
x1 = x01[:, :, :, 0::2]
x2 = x02[:, :, :, 0::2]
x3 = x01[:, :, :, 1::2]
x4 = x02[:, :, :, 1::2]
x_LL = x1 + x2 + x3 + x4
x_HL = -x1 - x2 + x3 + x4
x_LH = -x1 + x2 - x3 + x4
x_HH = x1 - x2 - x3 + x4
return torch.cat((x_LL, x_HL, x_LH, x_HH), 1)
def iwt_init(x):
r = 2
in_batch, in_channel, in_height, in_width = x.size()
# print([in_batch, in_channel, in_height, in_width])
out_batch, out_channel, out_height, out_width = (
in_batch,
int(in_channel / (r ** 2)),
r * in_height,
r * in_width,
)
x1 = x[:, 0:out_channel, :, :] / 2
x2 = x[:, out_channel : out_channel * 2, :, :] / 2
x3 = x[:, out_channel * 2 : out_channel * 3, :, :] / 2
x4 = x[:, out_channel * 3 : out_channel * 4, :, :] / 2
h = torch.zeros([out_batch, out_channel, out_height, out_width]).float().cuda()
h[:, :, 0::2, 0::2] = x1 - x2 - x3 + x4
h[:, :, 1::2, 0::2] = x1 - x2 + x3 - x4
h[:, :, 0::2, 1::2] = x1 + x2 - x3 - x4
h[:, :, 1::2, 1::2] = x1 + x2 + x3 + x4
return h
class HaarTransform(nn.Module):
def __init__(self, in_channels):
super().__init__()
ll, lh, hl, hh = get_haar_wavelet(in_channels)
self.register_buffer("ll", ll)
self.register_buffer("lh", lh)
self.register_buffer("hl", hl)
self.register_buffer("hh", hh)
def forward(self, input):
ll = upfirdn2d(input, self.ll, down=2)
lh = upfirdn2d(input, self.lh, down=2)
hl = upfirdn2d(input, self.hl, down=2)
hh = upfirdn2d(input, self.hh, down=2)
return torch.cat((ll, lh, hl, hh), 1)
class InverseHaarTransform(nn.Module):
def __init__(self, in_channels):
super().__init__()
ll, lh, hl, hh = get_haar_wavelet(in_channels)
self.register_buffer("ll", ll)
self.register_buffer("lh", -lh)
self.register_buffer("hl", -hl)
self.register_buffer("hh", hh)
def forward(self, input):
ll, lh, hl, hh = input.chunk(4, 1)
ll = upfirdn2d(ll, self.ll, up=2, pad=(1, 0, 1, 0))
lh = upfirdn2d(lh, self.lh, up=2, pad=(1, 0, 1, 0))
hl = upfirdn2d(hl, self.hl, up=2, pad=(1, 0, 1, 0))
hh = upfirdn2d(hh, self.hh, up=2, pad=(1, 0, 1, 0))
return ll + lh + hl + hh
class ToRGB(nn.Module):
def __init__(self, in_channel, style_dim, upsample=True, blur_kernel=[1, 3, 3, 1]):
super().__init__()
if upsample:
self.iwt = InverseHaarTransform(3)
self.upsample = Upsample(blur_kernel)
self.dwt = HaarTransform(3)
self.conv = ModulatedConv2d(in_channel, 3 * 4, 1, style_dim, demodulate=False)
self.bias = nn.Parameter(torch.zeros(1, 3 * 4, 1, 1))
def forward(self, input, style, skip=None):
out = self.conv(input, style)
out = out + self.bias
if skip is not None:
skip = self.iwt(skip)
skip = self.upsample(skip)
skip = self.dwt(skip)
out = out + skip
return out
class Generator(nn.Module):
def __init__(
self,
size,
style_dim,
n_mlp,
channel_multiplier=2,
blur_kernel=[1, 3, 3, 1],
lr_mlp=0.01,
):
super().__init__()
self.size = size
self.style_dim = style_dim
layers = [PixelNorm()]
for i in range(n_mlp):
layers.append(
EqualLinear(
style_dim, style_dim, lr_mul=lr_mlp, activation="fused_lrelu"
)
)
self.style = nn.Sequential(*layers)
self.channels = {
4: 512,
8: 512,
16: 512,
32: 512,
64: 256 * channel_multiplier,
128: 128 * channel_multiplier,
256: 64 * channel_multiplier,
512: 32 * channel_multiplier,
1024: 16 * channel_multiplier,
}
self.input = ConstantInput(self.channels[4])
self.conv1 = StyledConv(
self.channels[4], self.channels[4], 3, style_dim, blur_kernel=blur_kernel
)
self.to_rgb1 = ToRGB(self.channels[4], style_dim, upsample=False)
self.log_size = int(math.log(size, 2)) - 1
self.num_layers = (self.log_size - 2) * 2 + 1
self.convs = nn.ModuleList()
self.upsamples = nn.ModuleList()
self.to_rgbs = nn.ModuleList()
self.noises = nn.Module()
in_channel = self.channels[4]
for layer_idx in range(self.num_layers):
res = (layer_idx + 5) // 2
shape = [1, 1, 2 ** res, 2 ** res]
self.noises.register_buffer(f"noise_{layer_idx}", torch.randn(*shape))
for i in range(3, self.log_size + 1):
out_channel = self.channels[2 ** i]
self.convs.append(
StyledConv(
in_channel,
out_channel,
3,
style_dim,
upsample=True,
blur_kernel=blur_kernel,
)
)
self.convs.append(
StyledConv(
out_channel, out_channel, 3, style_dim, blur_kernel=blur_kernel
)
)
self.to_rgbs.append(ToRGB(out_channel, style_dim))
in_channel = out_channel
self.iwt = InverseHaarTransform(3)
self.n_latent = self.log_size * 2 - 2
def make_noise(self):
device = self.input.input.device
noises = [torch.randn(1, 1, 2 ** 2, 2 ** 2, device=device)]
for i in range(3, self.log_size + 1):
for _ in range(2):
noises.append(torch.randn(1, 1, 2 ** i, 2 ** i, device=device))
return noises
def mean_latent(self, n_latent):
latent_in = torch.randn(
n_latent, self.style_dim, device=self.input.input.device
)
latent = self.style(latent_in).mean(0, keepdim=True)
return latent
def get_latent(self, input):
return self.style(input)
def forward(
self,
styles,
return_latents=False,
inject_index=None,
truncation=1,
truncation_latent=None,
input_is_latent=False,
noise=None,
randomize_noise=True,
):
if not input_is_latent:
styles = [self.style(s) for s in styles]
if noise is None:
if randomize_noise:
noise = [None] * self.num_layers
else:
noise = [
getattr(self.noises, f"noise_{i}") for i in range(self.num_layers)
]
if truncation < 1:
style_t = []
for style in styles:
style_t.append(
truncation_latent + truncation * (style - truncation_latent)
)
styles = style_t
if len(styles) < 2:
inject_index = self.n_latent
if styles[0].ndim < 3:
latent = styles[0].unsqueeze(1).repeat(1, inject_index, 1)
else:
latent = styles[0]
else:
if inject_index is None:
inject_index = random.randint(1, self.n_latent - 1)
latent = styles[0].unsqueeze(1).repeat(1, inject_index, 1)
latent2 = styles[1].unsqueeze(1).repeat(1, self.n_latent - inject_index, 1)
latent = torch.cat([latent, latent2], 1)
out = self.input(latent)
out = self.conv1(out, latent[:, 0], noise=noise[0])
skip = self.to_rgb1(out, latent[:, 1])
i = 1
for conv1, conv2, noise1, noise2, to_rgb in zip(
self.convs[::2], self.convs[1::2], noise[1::2], noise[2::2], self.to_rgbs
):
out = conv1(out, latent[:, i], noise=noise1)
out = conv2(out, latent[:, i + 1], noise=noise2)
skip = to_rgb(out, latent[:, i + 2], skip)
i += 2
image = self.iwt(skip)
if return_latents:
return image, latent
else:
return image, None
class ConvBlock(nn.Module):
def __init__(self, in_channel, out_channel, blur_kernel=[1, 3, 3, 1]):
super().__init__()
self.conv1 = ConvLayer(in_channel, in_channel, 3)
self.conv2 = ConvLayer(in_channel, out_channel, 3, downsample=True)
def forward(self, input):
out = self.conv1(input)
out = self.conv2(out)
return out
class FromRGB(nn.Module):
def __init__(self, out_channel, downsample=True, blur_kernel=[1, 3, 3, 1]):
super().__init__()
self.downsample = downsample
if downsample:
self.iwt = InverseHaarTransform(3)
self.downsample = Downsample(blur_kernel)
self.dwt = HaarTransform(3)
self.conv = ConvLayer(3 * 4, out_channel, 3)
def forward(self, input, skip=None):
if self.downsample:
input = self.iwt(input)
input = self.downsample(input)
input = self.dwt(input)
out = self.conv(input)
if skip is not None:
out = out + skip
return input, out
class Discriminator(nn.Module):
def __init__(self, size, channel_multiplier=2, blur_kernel=[1, 3, 3, 1]):
super().__init__()
channels = {
4: 512,
8: 512,
16: 512,
32: 512,
64: 256 * channel_multiplier,
128: 128 * channel_multiplier,
256: 64 * channel_multiplier,
512: 32 * channel_multiplier,
1024: 16 * channel_multiplier,
}
self.dwt = HaarTransform(3)
self.from_rgbs = nn.ModuleList()
self.convs = nn.ModuleList()
log_size = int(math.log(size, 2)) - 1
in_channel = channels[size]
for i in range(log_size, 2, -1):
out_channel = channels[2 ** (i - 1)]
self.from_rgbs.append(FromRGB(in_channel, downsample=i != log_size))
self.convs.append(ConvBlock(in_channel, out_channel, blur_kernel))
in_channel = out_channel
self.from_rgbs.append(FromRGB(channels[4]))
self.stddev_group = 4
self.stddev_feat = 1
self.final_conv = ConvLayer(in_channel + 1, channels[4], 3)
self.final_linear = nn.Sequential(
EqualLinear(channels[4] * 4 * 4, channels[4], activation="fused_lrelu"),
EqualLinear(channels[4], 1),
)
def forward(self, input):
input = self.dwt(input)
out = None
for from_rgb, conv in zip(self.from_rgbs, self.convs):
input, out = from_rgb(input, out)
out = conv(out)
_, out = self.from_rgbs[-1](input, out)
batch, channel, height, width = out.shape
group = min(batch, self.stddev_group)
stddev = out.view(
group, -1, self.stddev_feat, channel // self.stddev_feat, height, width
)
stddev = torch.sqrt(stddev.var(0, unbiased=False) + 1e-8)
stddev = stddev.mean([2, 3, 4], keepdims=True).squeeze(2)
stddev = stddev.repeat(group, 1, height, width)
out = torch.cat([out, stddev], 1)
out = self.final_conv(out)
out = out.view(batch, -1)
out = self.final_linear(out)
return out