feng2022's picture
Update Time_TravelRephotography/op/upfirdn2d.py
c82ac8e
raw
history blame
9.2 kB
import os
import torch
from torch.autograd import Function
from torch.utils.cpp_extension import load
module_path = os.path.dirname(__file__)
#upfirdn2d_op = load(
# 'upfirdn2d',
# sources=[
# os.path.join(module_path, 'upfirdn2d.cpp'),
# os.path.join(module_path, 'upfirdn2d_kernel.cu'),
# ],
#)
class UpFirDn2dBackward(Function):
@staticmethod
def forward(
ctx, grad_output, kernel, grad_kernel, up, down, pad, g_pad, in_size, out_size
):
up_x, up_y = up
down_x, down_y = down
g_pad_x0, g_pad_x1, g_pad_y0, g_pad_y1 = g_pad
grad_output = grad_output.reshape(-1, out_size[0], out_size[1], 1)
grad_input = upfirdn2d_op.upfirdn2d(
grad_output,
grad_kernel,
down_x,
down_y,
up_x,
up_y,
g_pad_x0,
g_pad_x1,
g_pad_y0,
g_pad_y1,
)
grad_input = grad_input.view(in_size[0], in_size[1], in_size[2], in_size[3])
ctx.save_for_backward(kernel)
pad_x0, pad_x1, pad_y0, pad_y1 = pad
ctx.up_x = up_x
ctx.up_y = up_y
ctx.down_x = down_x
ctx.down_y = down_y
ctx.pad_x0 = pad_x0
ctx.pad_x1 = pad_x1
ctx.pad_y0 = pad_y0
ctx.pad_y1 = pad_y1
ctx.in_size = in_size
ctx.out_size = out_size
return grad_input
@staticmethod
def backward(ctx, gradgrad_input):
kernel, = ctx.saved_tensors
gradgrad_input = gradgrad_input.reshape(-1, ctx.in_size[2], ctx.in_size[3], 1)
gradgrad_out = upfirdn2d_op.upfirdn2d(
gradgrad_input,
kernel,
ctx.up_x,
ctx.up_y,
ctx.down_x,
ctx.down_y,
ctx.pad_x0,
ctx.pad_x1,
ctx.pad_y0,
ctx.pad_y1,
)
# gradgrad_out = gradgrad_out.view(ctx.in_size[0], ctx.out_size[0], ctx.out_size[1], ctx.in_size[3])
gradgrad_out = gradgrad_out.view(
ctx.in_size[0], ctx.in_size[1], ctx.out_size[0], ctx.out_size[1]
)
return gradgrad_out, None, None, None, None, None, None, None, None
class UpFirDn2d(Function):
@staticmethod
def forward(ctx, input, kernel, up, down, pad):
up_x, up_y = up
down_x, down_y = down
pad_x0, pad_x1, pad_y0, pad_y1 = pad
kernel_h, kernel_w = kernel.shape
batch, channel, in_h, in_w = input.shape
ctx.in_size = input.shape
input = input.reshape(-1, in_h, in_w, 1)
ctx.save_for_backward(kernel, torch.flip(kernel, [0, 1]))
out_h = (in_h * up_y + pad_y0 + pad_y1 - kernel_h) // down_y + 1
out_w = (in_w * up_x + pad_x0 + pad_x1 - kernel_w) // down_x + 1
ctx.out_size = (out_h, out_w)
ctx.up = (up_x, up_y)
ctx.down = (down_x, down_y)
ctx.pad = (pad_x0, pad_x1, pad_y0, pad_y1)
g_pad_x0 = kernel_w - pad_x0 - 1
g_pad_y0 = kernel_h - pad_y0 - 1
g_pad_x1 = in_w * up_x - out_w * down_x + pad_x0 - up_x + 1
g_pad_y1 = in_h * up_y - out_h * down_y + pad_y0 - up_y + 1
ctx.g_pad = (g_pad_x0, g_pad_x1, g_pad_y0, g_pad_y1)
out = upfirdn2d_op.upfirdn2d(
input, kernel, up_x, up_y, down_x, down_y, pad_x0, pad_x1, pad_y0, pad_y1
)
# out = out.view(major, out_h, out_w, minor)
out = out.view(-1, channel, out_h, out_w)
return out
@staticmethod
def backward(ctx, grad_output):
kernel, grad_kernel = ctx.saved_tensors
grad_input = UpFirDn2dBackward.apply(
grad_output,
kernel,
grad_kernel,
ctx.up,
ctx.down,
ctx.pad,
ctx.g_pad,
ctx.in_size,
ctx.out_size,
)
return grad_input, None, None, None, None
def _upfirdn2d_ref(x, f, up=1, down=1, padding=0, flip_filter=False, gain=1):
"""Slow reference implementation of `upfirdn2d()` using standard PyTorch ops.
"""
# Validate arguments.
assert isinstance(x, torch.Tensor) and x.ndim == 4
if f is None:
f = torch.ones([1, 1], dtype=torch.float32, device=x.device)
assert isinstance(f, torch.Tensor) and f.ndim in [1, 2]
assert f.dtype == torch.float32 and not f.requires_grad
batch_size, num_channels, in_height, in_width = x.shape
upx, upy = _parse_scaling(up)
downx, downy = _parse_scaling(down)
padx0, padx1, pady0, pady1 = _parse_padding(padding)
# Upsample by inserting zeros.
x = x.reshape([batch_size, num_channels, in_height, 1, in_width, 1])
x = torch.nn.functional.pad(x, [0, upx - 1, 0, 0, 0, upy - 1])
x = x.reshape([batch_size, num_channels, in_height * upy, in_width * upx])
# Pad or crop.
x = torch.nn.functional.pad(x, [max(padx0, 0), max(padx1, 0), max(pady0, 0), max(pady1, 0)])
x = x[:, :, max(-pady0, 0) : x.shape[2] - max(-pady1, 0), max(-padx0, 0) : x.shape[3] - max(-padx1, 0)]
# Setup filter.
f = f * (gain ** (f.ndim / 2))
f = f.to(x.dtype)
if not flip_filter:
f = f.flip(list(range(f.ndim)))
# Convolve with the filter.
f = f[np.newaxis, np.newaxis].repeat([num_channels, 1] + [1] * f.ndim)
if f.ndim == 4:
x = conv2d_gradfix.conv2d(input=x, weight=f, groups=num_channels)
else:
x = conv2d_gradfix.conv2d(input=x, weight=f.unsqueeze(2), groups=num_channels)
x = conv2d_gradfix.conv2d(input=x, weight=f.unsqueeze(3), groups=num_channels)
# Downsample by throwing away pixels.
x = x[:, :, ::downy, ::downx]
return x
def upfirdn2d(x, f, up=1, down=1, padding=0, flip_filter=False, gain=1, impl='cuda'):
r"""Pad, upsample, filter, and downsample a batch of 2D images.
Performs the following sequence of operations for each channel:
1. Upsample the image by inserting N-1 zeros after each pixel (`up`).
2. Pad the image with the specified number of zeros on each side (`padding`).
Negative padding corresponds to cropping the image.
3. Convolve the image with the specified 2D FIR filter (`f`), shrinking it
so that the footprint of all output pixels lies within the input image.
4. Downsample the image by keeping every Nth pixel (`down`).
This sequence of operations bears close resemblance to scipy.signal.upfirdn().
The fused op is considerably more efficient than performing the same calculation
using standard PyTorch ops. It supports gradients of arbitrary order.
Args:
x: Float32/float64/float16 input tensor of the shape
`[batch_size, num_channels, in_height, in_width]`.
f: Float32 FIR filter of the shape
`[filter_height, filter_width]` (non-separable),
`[filter_taps]` (separable), or
`None` (identity).
up: Integer upsampling factor. Can be a single int or a list/tuple
`[x, y]` (default: 1).
down: Integer downsampling factor. Can be a single int or a list/tuple
`[x, y]` (default: 1).
padding: Padding with respect to the upsampled image. Can be a single number
or a list/tuple `[x, y]` or `[x_before, x_after, y_before, y_after]`
(default: 0).
flip_filter: False = convolution, True = correlation (default: False).
gain: Overall scaling factor for signal magnitude (default: 1).
impl: Implementation to use. Can be `'ref'` or `'cuda'` (default: `'cuda'`).
Returns:
Tensor of the shape `[batch_size, num_channels, out_height, out_width]`.
"""
assert isinstance(x, torch.Tensor)
assert impl in ['ref', 'cuda']
if impl == 'cuda' and x.device.type == 'cuda' and _init():
return _upfirdn2d_cuda(up=up, down=down, padding=padding, flip_filter=flip_filter, gain=gain).apply(x, f)
return _upfirdn2d_ref(x, f, up=up, down=down, padding=padding, flip_filter=flip_filter, gain=gain)
def upfirdn2d_native(
input, kernel, up_x, up_y, down_x, down_y, pad_x0, pad_x1, pad_y0, pad_y1
):
_, in_h, in_w, minor = input.shape
kernel_h, kernel_w = kernel.shape
out = input.view(-1, in_h, 1, in_w, 1, minor)
out = F.pad(out, [0, 0, 0, up_x - 1, 0, 0, 0, up_y - 1])
out = out.view(-1, in_h * up_y, in_w * up_x, minor)
out = F.pad(
out, [0, 0, max(pad_x0, 0), max(pad_x1, 0), max(pad_y0, 0), max(pad_y1, 0)]
)
out = out[
:,
max(-pad_y0, 0) : out.shape[1] - max(-pad_y1, 0),
max(-pad_x0, 0) : out.shape[2] - max(-pad_x1, 0),
:,
]
out = out.permute(0, 3, 1, 2)
out = out.reshape(
[-1, 1, in_h * up_y + pad_y0 + pad_y1, in_w * up_x + pad_x0 + pad_x1]
)
w = torch.flip(kernel, [0, 1]).view(1, 1, kernel_h, kernel_w)
out = F.conv2d(out, w)
out = out.reshape(
-1,
minor,
in_h * up_y + pad_y0 + pad_y1 - kernel_h + 1,
in_w * up_x + pad_x0 + pad_x1 - kernel_w + 1,
)
out = out.permute(0, 2, 3, 1)
return out[:, ::down_y, ::down_x, :]