Spaces:
Runtime error
Runtime error
#!/usr/bin/env python | |
from __future__ import annotations | |
import argparse | |
import functools | |
import os | |
import pickle | |
import sys | |
import subprocess | |
import gradio as gr | |
import numpy as np | |
import torch | |
import torch.nn as nn | |
from huggingface_hub import hf_hub_download | |
from transformers import pipeline | |
sys.path.append('.') | |
sys.path.append('./Time_TravelRephotography') | |
from utils import torch_helpers as th | |
from argparse import Namespace | |
from projector import ( | |
ProjectorArguments, | |
main, | |
create_generator, | |
make_image, | |
) | |
sys.path.insert(0, 'StyleGAN-Human') | |
input_path = '' | |
spectral_sensitivity = 'b' | |
TITLE = 'Time-TravelRephotography' | |
DESCRIPTION = '''This is an unofficial demo for https://github.com/Time-Travel-Rephotography. | |
''' | |
ARTICLE = '<center><img src="https://visitor-badge.glitch.me/badge?page_id=hysts.stylegan-human" alt="visitor badge"/></center>' | |
TOKEN = "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" | |
pipe = pipeline("translation", model="Helsinki-NLP/opus-mt-en-es") | |
def parse_args() -> argparse.Namespace: | |
parser = argparse.ArgumentParser() | |
parser.add_argument('--device', type=str, default='cpu') | |
parser.add_argument('--theme', type=str) | |
parser.add_argument('--live', action='store_true') | |
parser.add_argument('--share', action='store_true') | |
parser.add_argument('--port', type=int) | |
parser.add_argument('--disable-queue', | |
dest='enable_queue', | |
action='store_false') | |
parser.add_argument('--allow-flagging', type=str, default='never') | |
return parser.parse_args() | |
def load_model(file_name: str, path:str,device: torch.device) -> nn.Module: | |
path = hf_hub_download(f'{path}', | |
f'{file_name}', | |
use_auth_token=TOKEN) | |
with open(path, 'rb') as f: | |
model = torch.load(f) | |
model.eval() | |
model.to(device) | |
with torch.inference_mode(): | |
z = torch.zeros((1, model.z_dim)).to(device) | |
label = torch.zeros([1, model.c_dim], device=device) | |
model(z, label, force_fp32=True) | |
return model | |
def predict(text): | |
return pipe(text)[0]["translation_text"] | |
def main(): | |
#torch.cuda.init() | |
#if torch.cuda.is_initialized(): | |
# ini = "True1" | |
#else: | |
# ini = "False1" | |
#result = subprocess.check_output(['nvidia-smi']) | |
#load_model("stylegan2-ffhq-config-f","feng2022/Time-TravelRephotography_stylegan2-ffhq-config-f",device) | |
args = ProjectorArguments().parse( | |
args=[str(input_path)], | |
namespace=Namespace( | |
# spectral_sensitivity=spectral_sensitivity, | |
encoder_ckpt=f"checkpoint/encoder/checkpoint_{spectral_sensitivity}.pt", | |
# encoder_name=spectral_sensitivity, | |
# gaussian=gaussian_radius, | |
log_visual_freq=1000, | |
input='text', | |
)) | |
device = th.device() | |
#generator = create_generator(args, device) | |
iface = gr.Interface( | |
fn=predict, | |
inputs='text', | |
outputs='text', | |
examples=['result'] | |
) | |
iface.launch() | |
if __name__ == '__main__': | |
main() | |