File size: 3,722 Bytes
f9827f9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
import argparse

import torch
from torch.nn import functional as F
import numpy as np
from tqdm import tqdm

import lpips
from model import Generator


def normalize(x):
    return x / torch.sqrt(x.pow(2).sum(-1, keepdim=True))


def slerp(a, b, t):
    a = normalize(a)
    b = normalize(b)
    d = (a * b).sum(-1, keepdim=True)
    p = t * torch.acos(d)
    c = normalize(b - d * a)
    d = a * torch.cos(p) + c * torch.sin(p)

    return normalize(d)


def lerp(a, b, t):
    return a + (b - a) * t


if __name__ == "__main__":
    device = "cuda"

    parser = argparse.ArgumentParser(description="Perceptual Path Length calculator")

    parser.add_argument(
        "--space", choices=["z", "w"], help="space that PPL calculated with"
    )
    parser.add_argument(
        "--batch", type=int, default=64, help="batch size for the models"
    )
    parser.add_argument(
        "--n_sample",
        type=int,
        default=5000,
        help="number of the samples for calculating PPL",
    )
    parser.add_argument(
        "--size", type=int, default=256, help="output image sizes of the generator"
    )
    parser.add_argument(
        "--eps", type=float, default=1e-4, help="epsilon for numerical stability"
    )
    parser.add_argument(
        "--crop", action="store_true", help="apply center crop to the images"
    )
    parser.add_argument(
        "--sampling",
        default="end",
        choices=["end", "full"],
        help="set endpoint sampling method",
    )
    parser.add_argument(
        "ckpt", metavar="CHECKPOINT", help="path to the model checkpoints"
    )

    args = parser.parse_args()

    latent_dim = 512

    ckpt = torch.load(args.ckpt)

    g = Generator(args.size, latent_dim, 8).to(device)
    g.load_state_dict(ckpt["g_ema"])
    g.eval()

    percept = lpips.PerceptualLoss(
        model="net-lin", net="vgg", use_gpu=device.startswith("cuda")
    )

    distances = []

    n_batch = args.n_sample // args.batch
    resid = args.n_sample - (n_batch * args.batch)
    batch_sizes = [args.batch] * n_batch + [resid]

    with torch.no_grad():
        for batch in tqdm(batch_sizes):
            noise = g.make_noise()

            inputs = torch.randn([batch * 2, latent_dim], device=device)
            if args.sampling == "full":
                lerp_t = torch.rand(batch, device=device)
            else:
                lerp_t = torch.zeros(batch, device=device)

            if args.space == "w":
                latent = g.get_latent(inputs)
                latent_t0, latent_t1 = latent[::2], latent[1::2]
                latent_e0 = lerp(latent_t0, latent_t1, lerp_t[:, None])
                latent_e1 = lerp(latent_t0, latent_t1, lerp_t[:, None] + args.eps)
                latent_e = torch.stack([latent_e0, latent_e1], 1).view(*latent.shape)

            image, _ = g([latent_e], input_is_latent=True, noise=noise)

            if args.crop:
                c = image.shape[2] // 8
                image = image[:, :, c * 3 : c * 7, c * 2 : c * 6]

            factor = image.shape[2] // 256

            if factor > 1:
                image = F.interpolate(
                    image, size=(256, 256), mode="bilinear", align_corners=False
                )

            dist = percept(image[::2], image[1::2]).view(image.shape[0] // 2) / (
                args.eps ** 2
            )
            distances.append(dist.to("cpu").numpy())

    distances = np.concatenate(distances, 0)

    lo = np.percentile(distances, 1, interpolation="lower")
    hi = np.percentile(distances, 99, interpolation="higher")
    filtered_dist = np.extract(
        np.logical_and(lo <= distances, distances <= hi), distances
    )

    print("ppl:", filtered_dist.mean())