File size: 15,846 Bytes
f9827f9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
import argparse
import math
import random
import os

import numpy as np
import torch
from torch import nn, autograd, optim
from torch.nn import functional as F
from torch.utils import data
import torch.distributed as dist
from torchvision import transforms, utils
from tqdm import tqdm

try:
    import wandb

except ImportError:
    wandb = None


from dataset import MultiResolutionDataset
from distributed import (
    get_rank,
    synchronize,
    reduce_loss_dict,
    reduce_sum,
    get_world_size,
)
from op import conv2d_gradfix
from non_leaking import augment, AdaptiveAugment


def data_sampler(dataset, shuffle, distributed):
    if distributed:
        return data.distributed.DistributedSampler(dataset, shuffle=shuffle)

    if shuffle:
        return data.RandomSampler(dataset)

    else:
        return data.SequentialSampler(dataset)


def requires_grad(model, flag=True):
    for p in model.parameters():
        p.requires_grad = flag


def accumulate(model1, model2, decay=0.999):
    par1 = dict(model1.named_parameters())
    par2 = dict(model2.named_parameters())

    for k in par1.keys():
        par1[k].data.mul_(decay).add_(par2[k].data, alpha=1 - decay)


def sample_data(loader):
    while True:
        for batch in loader:
            yield batch


def d_logistic_loss(real_pred, fake_pred):
    real_loss = F.softplus(-real_pred)
    fake_loss = F.softplus(fake_pred)

    return real_loss.mean() + fake_loss.mean()


def d_r1_loss(real_pred, real_img):
    with conv2d_gradfix.no_weight_gradients():
        grad_real, = autograd.grad(
            outputs=real_pred.sum(), inputs=real_img, create_graph=True
        )
    grad_penalty = grad_real.pow(2).reshape(grad_real.shape[0], -1).sum(1).mean()

    return grad_penalty


def g_nonsaturating_loss(fake_pred):
    loss = F.softplus(-fake_pred).mean()

    return loss


def g_path_regularize(fake_img, latents, mean_path_length, decay=0.01):
    noise = torch.randn_like(fake_img) / math.sqrt(
        fake_img.shape[2] * fake_img.shape[3]
    )
    grad, = autograd.grad(
        outputs=(fake_img * noise).sum(), inputs=latents, create_graph=True
    )
    path_lengths = torch.sqrt(grad.pow(2).sum(2).mean(1))

    path_mean = mean_path_length + decay * (path_lengths.mean() - mean_path_length)

    path_penalty = (path_lengths - path_mean).pow(2).mean()

    return path_penalty, path_mean.detach(), path_lengths


def make_noise(batch, latent_dim, n_noise, device):
    if n_noise == 1:
        return torch.randn(batch, latent_dim, device=device)

    noises = torch.randn(n_noise, batch, latent_dim, device=device).unbind(0)

    return noises


def mixing_noise(batch, latent_dim, prob, device):
    if prob > 0 and random.random() < prob:
        return make_noise(batch, latent_dim, 2, device)

    else:
        return [make_noise(batch, latent_dim, 1, device)]


def set_grad_none(model, targets):
    for n, p in model.named_parameters():
        if n in targets:
            p.grad = None


def train(args, loader, generator, discriminator, g_optim, d_optim, g_ema, device):
    loader = sample_data(loader)

    pbar = range(args.iter)

    if get_rank() == 0:
        pbar = tqdm(pbar, initial=args.start_iter, dynamic_ncols=True, smoothing=0.01)

    mean_path_length = 0

    d_loss_val = 0
    r1_loss = torch.tensor(0.0, device=device)
    g_loss_val = 0
    path_loss = torch.tensor(0.0, device=device)
    path_lengths = torch.tensor(0.0, device=device)
    mean_path_length_avg = 0
    loss_dict = {}

    if args.distributed:
        g_module = generator.module
        d_module = discriminator.module

    else:
        g_module = generator
        d_module = discriminator

    accum = 0.5 ** (32 / (10 * 1000))
    ada_aug_p = args.augment_p if args.augment_p > 0 else 0.0
    r_t_stat = 0

    if args.augment and args.augment_p == 0:
        ada_augment = AdaptiveAugment(args.ada_target, args.ada_length, 8, device)

    sample_z = torch.randn(args.n_sample, args.latent, device=device)

    for idx in pbar:
        i = idx + args.start_iter

        if i > args.iter:
            print("Done!")

            break

        real_img = next(loader)
        real_img = real_img.to(device)

        requires_grad(generator, False)
        requires_grad(discriminator, True)

        noise = mixing_noise(args.batch, args.latent, args.mixing, device)
        fake_img, _ = generator(noise)

        if args.augment:
            real_img_aug, _ = augment(real_img, ada_aug_p)
            fake_img, _ = augment(fake_img, ada_aug_p)

        else:
            real_img_aug = real_img

        fake_pred = discriminator(fake_img)
        real_pred = discriminator(real_img_aug)
        d_loss = d_logistic_loss(real_pred, fake_pred)

        loss_dict["d"] = d_loss
        loss_dict["real_score"] = real_pred.mean()
        loss_dict["fake_score"] = fake_pred.mean()

        discriminator.zero_grad()
        d_loss.backward()
        d_optim.step()

        if args.augment and args.augment_p == 0:
            ada_aug_p = ada_augment.tune(real_pred)
            r_t_stat = ada_augment.r_t_stat

        d_regularize = i % args.d_reg_every == 0

        if d_regularize:
            real_img.requires_grad = True

            if args.augment:
                real_img_aug, _ = augment(real_img, ada_aug_p)

            else:
                real_img_aug = real_img

            real_pred = discriminator(real_img_aug)
            r1_loss = d_r1_loss(real_pred, real_img)

            discriminator.zero_grad()
            (args.r1 / 2 * r1_loss * args.d_reg_every + 0 * real_pred[0]).backward()

            d_optim.step()

        loss_dict["r1"] = r1_loss

        requires_grad(generator, True)
        requires_grad(discriminator, False)

        noise = mixing_noise(args.batch, args.latent, args.mixing, device)
        fake_img, _ = generator(noise)

        if args.augment:
            fake_img, _ = augment(fake_img, ada_aug_p)

        fake_pred = discriminator(fake_img)
        g_loss = g_nonsaturating_loss(fake_pred)

        loss_dict["g"] = g_loss

        generator.zero_grad()
        g_loss.backward()
        g_optim.step()

        g_regularize = i % args.g_reg_every == 0

        if g_regularize:
            path_batch_size = max(1, args.batch // args.path_batch_shrink)
            noise = mixing_noise(path_batch_size, args.latent, args.mixing, device)
            fake_img, latents = generator(noise, return_latents=True)

            path_loss, mean_path_length, path_lengths = g_path_regularize(
                fake_img, latents, mean_path_length
            )

            generator.zero_grad()
            weighted_path_loss = args.path_regularize * args.g_reg_every * path_loss

            if args.path_batch_shrink:
                weighted_path_loss += 0 * fake_img[0, 0, 0, 0]

            weighted_path_loss.backward()

            g_optim.step()

            mean_path_length_avg = (
                reduce_sum(mean_path_length).item() / get_world_size()
            )

        loss_dict["path"] = path_loss
        loss_dict["path_length"] = path_lengths.mean()

        accumulate(g_ema, g_module, accum)

        loss_reduced = reduce_loss_dict(loss_dict)

        d_loss_val = loss_reduced["d"].mean().item()
        g_loss_val = loss_reduced["g"].mean().item()
        r1_val = loss_reduced["r1"].mean().item()
        path_loss_val = loss_reduced["path"].mean().item()
        real_score_val = loss_reduced["real_score"].mean().item()
        fake_score_val = loss_reduced["fake_score"].mean().item()
        path_length_val = loss_reduced["path_length"].mean().item()

        if get_rank() == 0:
            pbar.set_description(
                (
                    f"d: {d_loss_val:.4f}; g: {g_loss_val:.4f}; r1: {r1_val:.4f}; "
                    f"path: {path_loss_val:.4f}; mean path: {mean_path_length_avg:.4f}; "
                    f"augment: {ada_aug_p:.4f}"
                )
            )

            if wandb and args.wandb:
                wandb.log(
                    {
                        "Generator": g_loss_val,
                        "Discriminator": d_loss_val,
                        "Augment": ada_aug_p,
                        "Rt": r_t_stat,
                        "R1": r1_val,
                        "Path Length Regularization": path_loss_val,
                        "Mean Path Length": mean_path_length,
                        "Real Score": real_score_val,
                        "Fake Score": fake_score_val,
                        "Path Length": path_length_val,
                    }
                )

            if i % 100 == 0:
                with torch.no_grad():
                    g_ema.eval()
                    sample, _ = g_ema([sample_z])
                    utils.save_image(
                        sample,
                        f"sample/{str(i).zfill(6)}.png",
                        nrow=int(args.n_sample ** 0.5),
                        normalize=True,
                        range=(-1, 1),
                    )

            if i % 10000 == 0:
                torch.save(
                    {
                        "g": g_module.state_dict(),
                        "d": d_module.state_dict(),
                        "g_ema": g_ema.state_dict(),
                        "g_optim": g_optim.state_dict(),
                        "d_optim": d_optim.state_dict(),
                        "args": args,
                        "ada_aug_p": ada_aug_p,
                    },
                    f"checkpoint/{str(i).zfill(6)}.pt",
                )


if __name__ == "__main__":
    device = "cuda"

    parser = argparse.ArgumentParser(description="StyleGAN2 trainer")

    parser.add_argument("path", type=str, help="path to the lmdb dataset")
    parser.add_argument('--arch', type=str, default='stylegan2', help='model architectures (stylegan2 | swagan)')
    parser.add_argument(
        "--iter", type=int, default=800000, help="total training iterations"
    )
    parser.add_argument(
        "--batch", type=int, default=16, help="batch sizes for each gpus"
    )
    parser.add_argument(
        "--n_sample",
        type=int,
        default=64,
        help="number of the samples generated during training",
    )
    parser.add_argument(
        "--size", type=int, default=256, help="image sizes for the model"
    )
    parser.add_argument(
        "--r1", type=float, default=10, help="weight of the r1 regularization"
    )
    parser.add_argument(
        "--path_regularize",
        type=float,
        default=2,
        help="weight of the path length regularization",
    )
    parser.add_argument(
        "--path_batch_shrink",
        type=int,
        default=2,
        help="batch size reducing factor for the path length regularization (reduce memory consumption)",
    )
    parser.add_argument(
        "--d_reg_every",
        type=int,
        default=16,
        help="interval of the applying r1 regularization",
    )
    parser.add_argument(
        "--g_reg_every",
        type=int,
        default=4,
        help="interval of the applying path length regularization",
    )
    parser.add_argument(
        "--mixing", type=float, default=0.9, help="probability of latent code mixing"
    )
    parser.add_argument(
        "--ckpt",
        type=str,
        default=None,
        help="path to the checkpoints to resume training",
    )
    parser.add_argument("--lr", type=float, default=0.002, help="learning rate")
    parser.add_argument(
        "--channel_multiplier",
        type=int,
        default=2,
        help="channel multiplier factor for the model. config-f = 2, else = 1",
    )
    parser.add_argument(
        "--wandb", action="store_true", help="use weights and biases logging"
    )
    parser.add_argument(
        "--local_rank", type=int, default=0, help="local rank for distributed training"
    )
    parser.add_argument(
        "--augment", action="store_true", help="apply non leaking augmentation"
    )
    parser.add_argument(
        "--augment_p",
        type=float,
        default=0,
        help="probability of applying augmentation. 0 = use adaptive augmentation",
    )
    parser.add_argument(
        "--ada_target",
        type=float,
        default=0.6,
        help="target augmentation probability for adaptive augmentation",
    )
    parser.add_argument(
        "--ada_length",
        type=int,
        default=500 * 1000,
        help="target duraing to reach augmentation probability for adaptive augmentation",
    )
    parser.add_argument(
        "--ada_every",
        type=int,
        default=256,
        help="probability update interval of the adaptive augmentation",
    )

    args = parser.parse_args()

    n_gpu = int(os.environ["WORLD_SIZE"]) if "WORLD_SIZE" in os.environ else 1
    args.distributed = n_gpu > 1

    if args.distributed:
        torch.cuda.set_device(args.local_rank)
        torch.distributed.init_process_group(backend="nccl", init_method="env://")
        synchronize()

    args.latent = 512
    args.n_mlp = 8

    args.start_iter = 0

    if args.arch == 'stylegan2':
        from model import Generator, Discriminator

    elif args.arch == 'swagan':
        from swagan import Generator, Discriminator

    generator = Generator(
        args.size, args.latent, args.n_mlp, channel_multiplier=args.channel_multiplier
    ).to(device)
    discriminator = Discriminator(
        args.size, channel_multiplier=args.channel_multiplier
    ).to(device)
    g_ema = Generator(
        args.size, args.latent, args.n_mlp, channel_multiplier=args.channel_multiplier
    ).to(device)
    g_ema.eval()
    accumulate(g_ema, generator, 0)

    g_reg_ratio = args.g_reg_every / (args.g_reg_every + 1)
    d_reg_ratio = args.d_reg_every / (args.d_reg_every + 1)

    g_optim = optim.Adam(
        generator.parameters(),
        lr=args.lr * g_reg_ratio,
        betas=(0 ** g_reg_ratio, 0.99 ** g_reg_ratio),
    )
    d_optim = optim.Adam(
        discriminator.parameters(),
        lr=args.lr * d_reg_ratio,
        betas=(0 ** d_reg_ratio, 0.99 ** d_reg_ratio),
    )

    if args.ckpt is not None:
        print("load model:", args.ckpt)

        ckpt = torch.load(args.ckpt, map_location=lambda storage, loc: storage)

        try:
            ckpt_name = os.path.basename(args.ckpt)
            args.start_iter = int(os.path.splitext(ckpt_name)[0])

        except ValueError:
            pass

        generator.load_state_dict(ckpt["g"])
        discriminator.load_state_dict(ckpt["d"])
        g_ema.load_state_dict(ckpt["g_ema"])

        g_optim.load_state_dict(ckpt["g_optim"])
        d_optim.load_state_dict(ckpt["d_optim"])

    if args.distributed:
        generator = nn.parallel.DistributedDataParallel(
            generator,
            device_ids=[args.local_rank],
            output_device=args.local_rank,
            broadcast_buffers=False,
        )

        discriminator = nn.parallel.DistributedDataParallel(
            discriminator,
            device_ids=[args.local_rank],
            output_device=args.local_rank,
            broadcast_buffers=False,
        )

    transform = transforms.Compose(
        [
            transforms.RandomHorizontalFlip(),
            transforms.ToTensor(),
            transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5), inplace=True),
        ]
    )

    dataset = MultiResolutionDataset(args.path, transform, args.size)
    loader = data.DataLoader(
        dataset,
        batch_size=args.batch,
        sampler=data_sampler(dataset, shuffle=True, distributed=args.distributed),
        drop_last=True,
    )

    if get_rank() == 0 and wandb is not None and args.wandb:
        wandb.init(project="stylegan 2")

    train(args, loader, generator, discriminator, g_optim, d_optim, g_ema, device)