Spaces:
Runtime error
Runtime error
File size: 3,947 Bytes
40ce629 f57ed6a 40ce629 f57ed6a 119d5c2 f57ed6a 40ce629 f57ed6a 98a2239 40ce629 51f1e70 38a5e47 cc52c45 c405107 51f1e70 0025f06 18f9c41 0025f06 40ce629 092a462 fe030b4 b703853 40ce629 27f8154 40ce629 972a2bf 5c7b316 972a2bf abe9d47 39868fe 40e259d 39868fe 40e259d 39868fe 972a2bf 3361691 40e259d 1f683a7 7f59eee 2a5cb12 e7d7286 092a462 fe030b4 5156054 5d42f5f e7d7286 3361691 2a45a43 3361691 40e259d 3361691 2a45a43 3361691 27f8154 3361691 40e259d 78f6e98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 |
#!/usr/bin/env python
from __future__ import annotations
import argparse
import functools
import os
import pickle
import sys
import subprocess
import gradio as gr
import numpy as np
import torch
import torch.nn as nn
from huggingface_hub import hf_hub_download
from transformers import pipeline
sys.path.append('.')
sys.path.append('./Time_TravelRephotography')
from utils import torch_helpers as th
from argparse import Namespace
from projector import (
ProjectorArguments,
main,
create_generator,
make_image,
)
sys.path.insert(0, 'StyleGAN-Human')
input_path = ''
spectral_sensitivity = 'b'
TITLE = 'Time-TravelRephotography'
DESCRIPTION = '''This is an unofficial demo for https://github.com/Time-Travel-Rephotography.
'''
ARTICLE = '<center><img src="https://visitor-badge.glitch.me/badge?page_id=Time-TravelRephotography" alt="visitor badge"/></center>'
TOKEN = "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"
pipe = pipeline("translation", model="Helsinki-NLP/opus-mt-en-es")
scores = []
def parse_args() -> argparse.Namespace:
parser = argparse.ArgumentParser()
parser.add_argument('--device', type=str, default='cpu')
parser.add_argument('--theme', type=str)
parser.add_argument('--live', action='store_true')
parser.add_argument('--share', action='store_true')
parser.add_argument('--port', type=int)
parser.add_argument('--disable-queue',
dest='enable_queue',
action='store_false')
parser.add_argument('--allow-flagging', type=str, default='never')
return parser.parse_args()
def load_model(file_name: str, path:str,device: torch.device) -> nn.Module:
path = hf_hub_download(f'{path}',
f'{file_name}',
use_auth_token=TOKEN)
with open(path, 'rb') as f:
model = torch.load(f)
model.eval()
model.to(device)
with torch.inference_mode():
z = torch.zeros((1, model.z_dim)).to(device)
label = torch.zeros([1, model.c_dim], device=device)
model(z, label, force_fp32=True)
return model
def predict(text):
return pipe(text)[0]["translation_text"]
def track_score(score):
scores.append(score)
top_scores = sorted(scores, reverse=True)[:3]
return top_scores
def main():
#torch.cuda.init()
#if torch.cuda.is_initialized():
# ini = "True1"
#else:
# ini = "False1"
#result = subprocess.check_output(['nvidia-smi'])
#load_model("stylegan2-ffhq-config-f","feng2022/Time-TravelRephotography_stylegan2-ffhq-config-f",device)
"""args = ProjectorArguments().parse(
args=[str(input_path)],
namespace=Namespace(
# spectral_sensitivity=spectral_sensitivity,
encoder_ckpt=f"checkpoint/encoder/checkpoint_{spectral_sensitivity}.pt",
# encoder_name=spectral_sensitivity,
# gaussian=gaussian_radius,
log_visual_freq=1000,
input='text',
))
device = th.device()
generator = create_generator("stylegan2-ffhq-config-f.pt","feng2022/Time-TravelRephotography_stylegan2-ffhq-config-f",args, device)
latent = torch.randn((1, 512), device=device)
img_out, _, _ = generator([latent])
imgs_arr = make_image(img_out)"""
#iface = gr.Interface(
#fn=predict,
#inputs='text',
#outputs='text',
#examples=['result'],
#gr.outputs.Image(type='numpy', label='Output'),
#title=TITLE,
#description=DESCRIPTION,
#article=ARTICLE,
#theme=args.theme,
#allow_flagging=args.allow_flagging,
#live=args.live,
#)
#iface.launch(
#enable_queue=args.enable_queue,
#server_port=args.port,
#share=args.share,
#)
demo = gr.Interface(
track_score,
gr.Number(label="Score"),
gr.JSON(label="Top Scores")
)
demo.launch()
if __name__ == '__main__':
main()
|