Spaces:
Runtime error
Runtime error
File size: 2,286 Bytes
40ce629 f57ed6a 40ce629 f57ed6a 119d5c2 f57ed6a 40ce629 f57ed6a 98a2239 40ce629 51f1e70 38a5e47 cc52c45 c405107 51f1e70 0025f06 18f9c41 0025f06 40ce629 092a462 fe030b4 b703853 40ce629 27f8154 40ce629 39868fe 28e8fb4 a9f4e65 ae8b571 9d9b9ef ed89585 7a47d07 a997257 5266bb1 a9f4e65 c80e976 40e259d 1f683a7 7f59eee b0dd76b 5266bb1 18cc678 2ed7e26 40e259d 7335ad6 ae8b571 40e259d 78f6e98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 |
#!/usr/bin/env python
from __future__ import annotations
import argparse
import functools
import os
import pickle
import sys
import subprocess
import gradio as gr
import numpy as np
import torch
import torch.nn as nn
from huggingface_hub import hf_hub_download
from transformers import pipeline
sys.path.append('.')
sys.path.append('./Time_TravelRephotography')
from utils import torch_helpers as th
from argparse import Namespace
from projector import (
ProjectorArguments,
main,
create_generator,
make_image,
)
sys.path.insert(0, 'StyleGAN-Human')
input_path = ''
spectral_sensitivity = 'b'
TITLE = 'Time-TravelRephotography'
DESCRIPTION = '''This is an unofficial demo for https://github.com/Time-Travel-Rephotography.
'''
ARTICLE = '<center><img src="https://visitor-badge.glitch.me/badge?page_id=Time-TravelRephotography" alt="visitor badge"/></center>'
TOKEN = "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"
def image_create(seed: int, truncation_psi: float):
"""args = ProjectorArguments().parse(
args=[str(input_path)],
namespace=Namespace(
encoder_ckpt=f"checkpoint/encoder/checkpoint_{spectral_sensitivity}.pt",
#gaussian=gaussian_radius,
log_visual_freq=1000
))
device = th.device()
generator = create_generator("stylegan2-ffhq-config-f.pt","feng2022/Time-TravelRephotography_stylegan2-ffhq-config-f",args,device)
latent = torch.randn((1, 512), device=device)
img_out, _, _ = generator([latent])
imgs_arr = make_image(img_out)
return imgs_arr[0][0]"""
return np.zeros((10,10,3))
def main():
#torch.cuda.init()
#if torch.cuda.is_initialized():
# ini = "True1"
#else:
# ini = "False1"
#result = subprocess.check_output(['nvidia-smi'])
device = th.device()
iface = gr.Interface(
image_create,
[
gr.inputs.Number(default=0, label='Seed'),
gr.inputs.Slider(
0, 2, step=0.05, default=0.7, label='Truncation psi'),
],
gr.outputs.Image(type='numpy', label='Output'),
title=TITLE,
description=DESCRIPTION,
article=ARTICLE,
)
iface.launch()
if __name__ == '__main__':
main()
|