Spaces:
Runtime error
Runtime error
File size: 2,995 Bytes
40ce629 f57ed6a 40ce629 f57ed6a 119d5c2 f57ed6a 40ce629 f57ed6a 98a2239 40ce629 51f1e70 38a5e47 cc52c45 c405107 51f1e70 0025f06 40ce629 fe030b4 b703853 40ce629 972a2bf abe9d47 39868fe 40e259d 39868fe 40e259d 39868fe 972a2bf 40e259d 1f683a7 7f59eee abe9d47 fe030b4 5156054 fe030b4 f4f2167 6443665 40e259d 4ad69d5 40e259d f4f2167 40e259d 78f6e98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 |
#!/usr/bin/env python
from __future__ import annotations
import argparse
import functools
import os
import pickle
import sys
import subprocess
import gradio as gr
import numpy as np
import torch
import torch.nn as nn
from huggingface_hub import hf_hub_download
from transformers import pipeline
sys.path.append('.')
sys.path.append('./Time_TravelRephotography')
from utils import torch_helpers as th
from argparse import Namespace
from projector import (
ProjectorArguments,
main,
)
sys.path.insert(0, 'StyleGAN-Human')
spectral_sensitivity = 'b'
TITLE = 'Time-TravelRephotography'
DESCRIPTION = '''This is an unofficial demo for https://github.com/Time-Travel-Rephotography.
'''
ARTICLE = '<center><img src="https://visitor-badge.glitch.me/badge?page_id=hysts.stylegan-human" alt="visitor badge"/></center>'
TOKEN = "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"
pipe = pipeline("translation", model="Helsinki-NLP/opus-mt-en-es")
def parse_args() -> argparse.Namespace:
parser = argparse.ArgumentParser()
parser.add_argument('--device', type=str, default='cpu')
parser.add_argument('--theme', type=str)
parser.add_argument('--live', action='store_true')
parser.add_argument('--share', action='store_true')
parser.add_argument('--port', type=int)
parser.add_argument('--disable-queue',
dest='enable_queue',
action='store_false')
parser.add_argument('--allow-flagging', type=str, default='never')
return parser.parse_args()
def load_model(file_name: str, path:str,device: torch.device) -> nn.Module:
path = hf_hub_download(f'{path}',
f'{file_name}',
use_auth_token=TOKEN)
with open(path, 'rb') as f:
model = torch.load(f)
model.eval()
model.to(device)
with torch.inference_mode():
z = torch.zeros((1, model.z_dim)).to(device)
label = torch.zeros([1, model.c_dim], device=device)
model(z, label, force_fp32=True)
return model
def predict(text):
return pipe(text)[0]["translation_text"]
def main():
#torch.cuda.init()
#if torch.cuda.is_initialized():
# ini = "True1"
#else:
# ini = "False1"
#result = subprocess.check_output(['nvidia-smi'])
args = ProjectorArguments().parse(
namespace=Namespace(
# spectral_sensitivity=spectral_sensitivity,
encoder_ckpt=f"checkpoint/encoder/checkpoint_{spectral_sensitivity}.pt",
# encoder_name=spectral_sensitivity,
# gaussian=gaussian_radius,
log_visual_freq=1000,
input='text',
))
#device = torch.device(args.device)
#load_model("stylegan2-ffhq-config-f","feng2022/Time-TravelRephotography_stylegan2-ffhq-config-f",device)
iface = gr.Interface(
fn=predict,
inputs='text',
outputs='text',
examples=['result']
)
iface.launch()
if __name__ == '__main__':
main()
|