Spaces:
Running
Running
import gradio | |
import tensorflow as tf | |
from huggingface_hub import Repository | |
repo = Repository() | |
from utils.utils import norm_crop, estimate_norm, inverse_estimate_norm, transform_landmark_points, get_lm, load_model_internal | |
from networks.generator import get_generator | |
import numpy as np | |
import cv2 | |
from scipy.ndimage import gaussian_filter | |
from tensorflow.keras.models import load_model | |
from retinaface.models import * | |
from options.swap_options import SwapOptions | |
opt = SwapOptions().parse() | |
#gpus = tf.config.experimental.list_physical_devices('GPU') | |
#tf.config.set_visible_devices(gpus[opt.device_id], 'GPU') | |
RetinaFace = load_model(opt.retina_path, | |
custom_objects={"FPN": FPN, | |
"SSH": SSH, | |
"BboxHead": BboxHead, | |
"LandmarkHead": LandmarkHead, | |
"ClassHead": ClassHead}) | |
ArcFace = load_model(opt.arcface_path) | |
G = load_model_internal(opt.chkp_dir + opt.log_name + "/gen/", "gen", opt.load) | |
blend_mask_base = np.zeros(shape=(256, 256, 1)) | |
blend_mask_base[100:240, 32:224] = 1 | |
blend_mask_base = gaussian_filter(blend_mask_base, sigma=7) | |
def run_inference(target, source): | |
source = np.array(source) | |
target = np.array(target) | |
# Prepare to load video | |
source_a = RetinaFace(np.expand_dims(source, axis=0)).numpy()[0] | |
source_h, source_w, _ = source.shape | |
source_lm = get_lm(source_a, source_w, source_h) | |
source_aligned = norm_crop(source, source_lm, image_size=256) | |
source_z = ArcFace.predict(np.expand_dims(tf.image.resize(source_aligned, [112, 112]) / 255.0, axis=0)) | |
# read frame | |
im = target | |
im_h, im_w, _ = im.shape | |
im_shape = (im_w, im_h) | |
detection_scale = im_w // 640 if im_w > 640 else 1 | |
faces = RetinaFace(np.expand_dims(cv2.resize(im, | |
(im_w // detection_scale, | |
im_h // detection_scale)), axis=0)).numpy() | |
total_img = im / 255.0 | |
for annotation in faces: | |
lm_align = np.array([[annotation[4] * im_w, annotation[5] * im_h], | |
[annotation[6] * im_w, annotation[7] * im_h], | |
[annotation[8] * im_w, annotation[9] * im_h], | |
[annotation[10] * im_w, annotation[11] * im_h], | |
[annotation[12] * im_w, annotation[13] * im_h]], | |
dtype=np.float32) | |
# align the detected face | |
M, pose_index = estimate_norm(lm_align, 256, "arcface", shrink_factor=1.0) | |
im_aligned = cv2.warpAffine(im, M, (256, 256), borderValue=0.0) | |
# face swap | |
changed_face_cage = G.predict([np.expand_dims((im_aligned - 127.5) / 127.5, axis=0), | |
source_z]) | |
changed_face = (changed_face_cage[0] + 1) / 2 | |
# get inverse transformation landmarks | |
transformed_lmk = transform_landmark_points(M, lm_align) | |
# warp image back | |
iM, _ = inverse_estimate_norm(lm_align, transformed_lmk, 256, "arcface", shrink_factor=1.0) | |
iim_aligned = cv2.warpAffine(changed_face, iM, im_shape, borderValue=0.0) | |
# blend swapped face with target image | |
blend_mask = cv2.warpAffine(blend_mask_base, iM, im_shape, borderValue=0.0) | |
blend_mask = np.expand_dims(blend_mask, axis=-1) | |
total_img = (iim_aligned * blend_mask + total_img * (1 - blend_mask)) | |
if opt.compare: | |
total_img = np.concatenate((im / 255.0, total_img), axis=1) | |
total_img = np.clip(total_img, 0, 1) | |
total_img *= 255.0 | |
total_img = total_img.astype('uint8') | |
return total_img | |
iface = gradio.Interface(run_inference, | |
[gradio.inputs.Image(shape=None), | |
gradio.inputs.Image(shape=None)], | |
gradio.outputs.Image()) | |
iface.launch() | |