face-swap / app.py
felixrosberg's picture
clean up
fae5def
raw
history blame
4.41 kB
import gradio
from huggingface_hub import Repository
from utils.utils import norm_crop, estimate_norm, inverse_estimate_norm, transform_landmark_points, get_lm
from networks.layers import AdaIN, AdaptiveAttention
import numpy as np
import cv2
from scipy.ndimage import gaussian_filter
from tensorflow.keras.models import load_model
from retinaface.models import *
from options.swap_options import SwapOptions
opt = SwapOptions().parse()
retina_repo = Repository(local_dir="retina_model", clone_from="felixrosberg/retinaface_resnet50",
private=True, use_auth_token="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")
RetinaFace = load_model("retina_model/retinaface_res50.h5",
custom_objects={"FPN": FPN,
"SSH": SSH,
"BboxHead": BboxHead,
"LandmarkHead": LandmarkHead,
"ClassHead": ClassHead})
arc_repo = Repository(local_dir="arcface_model", clone_from="felixrosberg/arcface_tf",
private=True, use_auth_token="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")
ArcFace = load_model("arcface_model/arc_res50.h5")
g_repo = Repository(local_dir="g_model", clone_from="felixrosberg/affa_f",
private=True, use_auth_token="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")
G = load_model("g_model/affa_f_demo.h5", custom_objects={"AdaIN": AdaIN, "AdaptiveAttention": AdaptiveAttention})
blend_mask_base = np.zeros(shape=(256, 256, 1))
blend_mask_base[100:240, 32:224] = 1
blend_mask_base = gaussian_filter(blend_mask_base, sigma=7)
def run_inference(target, source):
source = np.array(source)
target = np.array(target)
# Prepare to load video
source_a = RetinaFace(np.expand_dims(source, axis=0)).numpy()[0]
source_h, source_w, _ = source.shape
source_lm = get_lm(source_a, source_w, source_h)
source_aligned = norm_crop(source, source_lm, image_size=256)
source_z = ArcFace.predict(np.expand_dims(tf.image.resize(source_aligned, [112, 112]) / 255.0, axis=0))
# read frame
im = target
im_h, im_w, _ = im.shape
im_shape = (im_w, im_h)
detection_scale = im_w // 640 if im_w > 640 else 1
faces = RetinaFace(np.expand_dims(cv2.resize(im,
(im_w // detection_scale,
im_h // detection_scale)), axis=0)).numpy()
total_img = im / 255.0
for annotation in faces:
lm_align = np.array([[annotation[4] * im_w, annotation[5] * im_h],
[annotation[6] * im_w, annotation[7] * im_h],
[annotation[8] * im_w, annotation[9] * im_h],
[annotation[10] * im_w, annotation[11] * im_h],
[annotation[12] * im_w, annotation[13] * im_h]],
dtype=np.float32)
# align the detected face
M, pose_index = estimate_norm(lm_align, 256, "arcface", shrink_factor=1.0)
im_aligned = cv2.warpAffine(im, M, (256, 256), borderValue=0.0)
# face swap
changed_face_cage = G.predict([np.expand_dims((im_aligned - 127.5) / 127.5, axis=0),
source_z])
changed_face = (changed_face_cage[0] + 1) / 2
# get inverse transformation landmarks
transformed_lmk = transform_landmark_points(M, lm_align)
# warp image back
iM, _ = inverse_estimate_norm(lm_align, transformed_lmk, 256, "arcface", shrink_factor=1.0)
iim_aligned = cv2.warpAffine(changed_face, iM, im_shape, borderValue=0.0)
# blend swapped face with target image
blend_mask = cv2.warpAffine(blend_mask_base, iM, im_shape, borderValue=0.0)
blend_mask = np.expand_dims(blend_mask, axis=-1)
total_img = (iim_aligned * blend_mask + total_img * (1 - blend_mask))
if opt.compare:
total_img = np.concatenate((im / 255.0, total_img), axis=1)
total_img = np.clip(total_img, 0, 1)
total_img *= 255.0
total_img = total_img.astype('uint8')
return total_img
iface = gradio.Interface(run_inference,
[gradio.inputs.Image(shape=None),
gradio.inputs.Image(shape=None)],
gradio.outputs.Image())
iface.launch()