felixrosberg's picture
with private models
69c590e
raw
history blame
962 Bytes
from retinaface.anchor import decode_tf, prior_box_tf
import tensorflow as tf
def extract_detections(bbox_regressions, landm_regressions, classifications, image_sizes, iou_th=0.4, score_th=0.02):
min_sizes = [[16, 32], [64, 128], [256, 512]]
steps = [8, 16, 32]
variances = [0.1, 0.2]
preds = tf.concat( # [bboxes, landms, landms_valid, conf]
[bbox_regressions,
landm_regressions,
tf.ones_like(classifications[:, 0][..., tf.newaxis]),
classifications[:, 1][..., tf.newaxis]], 1)
priors = prior_box_tf(image_sizes, min_sizes, steps, False)
decode_preds = decode_tf(preds, priors, variances)
selected_indices = tf.image.non_max_suppression(
boxes=decode_preds[:, :4],
scores=decode_preds[:, -1],
max_output_size=tf.shape(decode_preds)[0],
iou_threshold=iou_th,
score_threshold=score_th)
out = tf.gather(decode_preds, selected_indices)
return out