Spaces:
Running
Running
"""Anchor utils modified from https://github.com/biubug6/Pytorch_Retinaface""" | |
import math | |
import tensorflow as tf | |
import numpy as np | |
from itertools import product as product | |
############################################################################### | |
# Tensorflow / Numpy Priors # | |
############################################################################### | |
def prior_box(image_sizes, min_sizes, steps, clip=False): | |
"""prior box""" | |
feature_maps = [ | |
[math.ceil(image_sizes[0] / step), math.ceil(image_sizes[1] / step)] | |
for step in steps] | |
anchors = [] | |
for k, f in enumerate(feature_maps): | |
for i, j in product(range(f[0]), range(f[1])): | |
for min_size in min_sizes[k]: | |
s_kx = min_size / image_sizes[1] | |
s_ky = min_size / image_sizes[0] | |
cx = (j + 0.5) * steps[k] / image_sizes[1] | |
cy = (i + 0.5) * steps[k] / image_sizes[0] | |
anchors += [cx, cy, s_kx, s_ky] | |
output = np.asarray(anchors).reshape([-1, 4]) | |
if clip: | |
output = np.clip(output, 0, 1) | |
return output | |
def prior_box_tf(image_sizes, min_sizes, steps, clip=False): | |
"""prior box""" | |
image_sizes = tf.cast(tf.convert_to_tensor(image_sizes), tf.float32) | |
feature_maps = tf.math.ceil( | |
tf.reshape(image_sizes, [1, 2]) / | |
tf.reshape(tf.cast(steps, tf.float32), [-1, 1])) | |
anchors = [] | |
for k in range(len(min_sizes)): | |
grid_x, grid_y = _meshgrid_tf(tf.range(feature_maps[k][1]), | |
tf.range(feature_maps[k][0])) | |
cx = (grid_x + 0.5) * steps[k] / image_sizes[1] | |
cy = (grid_y + 0.5) * steps[k] / image_sizes[0] | |
cxcy = tf.stack([cx, cy], axis=-1) | |
cxcy = tf.reshape(cxcy, [-1, 2]) | |
cxcy = tf.repeat(cxcy, repeats=tf.shape(min_sizes[k])[0], axis=0) | |
sx = min_sizes[k] / image_sizes[1] | |
sy = min_sizes[k] / image_sizes[0] | |
sxsy = tf.stack([sx, sy], 1) | |
sxsy = tf.repeat(sxsy[tf.newaxis], | |
repeats=tf.shape(grid_x)[0] * tf.shape(grid_x)[1], | |
axis=0) | |
sxsy = tf.reshape(sxsy, [-1, 2]) | |
anchors.append(tf.concat([cxcy, sxsy], 1)) | |
output = tf.concat(anchors, axis=0) | |
if clip: | |
output = tf.clip_by_value(output, 0, 1) | |
return output | |
def _meshgrid_tf(x, y): | |
""" workaround solution of the tf.meshgrid() issue: | |
https://github.com/tensorflow/tensorflow/issues/34470""" | |
grid_shape = [tf.shape(y)[0], tf.shape(x)[0]] | |
grid_x = tf.broadcast_to(tf.reshape(x, [1, -1]), grid_shape) | |
grid_y = tf.broadcast_to(tf.reshape(y, [-1, 1]), grid_shape) | |
return grid_x, grid_y | |
############################################################################### | |
# Tensorflow Encoding # | |
############################################################################### | |
def encode_tf(labels, priors, match_thresh, ignore_thresh, | |
variances=[0.1, 0.2]): | |
"""tensorflow encoding""" | |
assert ignore_thresh <= match_thresh | |
priors = tf.cast(priors, tf.float32) | |
bbox = labels[:, :4] | |
landm = labels[:, 4:-1] | |
landm_valid = labels[:, -1] # 1: with landm, 0: w/o landm. | |
# jaccard index | |
overlaps = _jaccard(bbox, _point_form(priors)) | |
# (Bipartite Matching) | |
# [num_objects] best prior for each ground truth | |
best_prior_overlap, best_prior_idx = tf.math.top_k(overlaps, k=1) | |
best_prior_overlap = best_prior_overlap[:, 0] | |
best_prior_idx = best_prior_idx[:, 0] | |
# [num_priors] best ground truth for each prior | |
overlaps_t = tf.transpose(overlaps) | |
best_truth_overlap, best_truth_idx = tf.math.top_k(overlaps_t, k=1) | |
best_truth_overlap = best_truth_overlap[:, 0] | |
best_truth_idx = best_truth_idx[:, 0] | |
# ensure best prior | |
def _loop_body(i, bt_idx, bt_overlap): | |
bp_mask = tf.one_hot(best_prior_idx[i], tf.shape(bt_idx)[0]) | |
bp_mask_int = tf.cast(bp_mask, tf.int32) | |
new_bt_idx = bt_idx * (1 - bp_mask_int) + bp_mask_int * i | |
bp_mask_float = tf.cast(bp_mask, tf.float32) | |
new_bt_overlap = bt_overlap * (1 - bp_mask_float) + bp_mask_float * 2 | |
return tf.cond(best_prior_overlap[i] > match_thresh, | |
lambda: (i + 1, new_bt_idx, new_bt_overlap), | |
lambda: (i + 1, bt_idx, bt_overlap)) | |
_, best_truth_idx, best_truth_overlap = tf.while_loop( | |
lambda i, bt_idx, bt_overlap: tf.less(i, tf.shape(best_prior_idx)[0]), | |
_loop_body, [tf.constant(0), best_truth_idx, best_truth_overlap]) | |
matches_bbox = tf.gather(bbox, best_truth_idx) # [num_priors, 4] | |
matches_landm = tf.gather(landm, best_truth_idx) # [num_priors, 10] | |
matches_landm_v = tf.gather(landm_valid, best_truth_idx) # [num_priors] | |
loc_t = _encode_bbox(matches_bbox, priors, variances) | |
landm_t = _encode_landm(matches_landm, priors, variances) | |
landm_valid_t = tf.cast(matches_landm_v > 0, tf.float32) | |
conf_t = tf.cast(best_truth_overlap > match_thresh, tf.float32) | |
conf_t = tf.where( | |
tf.logical_and(best_truth_overlap < match_thresh, | |
best_truth_overlap > ignore_thresh), | |
tf.ones_like(conf_t) * -1, conf_t) # 1: pos, 0: neg, -1: ignore | |
return tf.concat([loc_t, landm_t, landm_valid_t[..., tf.newaxis], | |
conf_t[..., tf.newaxis]], axis=1) | |
def _encode_bbox(matched, priors, variances): | |
"""Encode the variances from the priorbox layers into the ground truth | |
boxes we have matched (based on jaccard overlap) with the prior boxes. | |
Args: | |
matched: (tensor) Coords of ground truth for each prior in point-form | |
Shape: [num_priors, 4]. | |
priors: (tensor) Prior boxes in center-offset form | |
Shape: [num_priors,4]. | |
variances: (list[float]) Variances of priorboxes | |
Return: | |
encoded boxes (tensor), Shape: [num_priors, 4] | |
""" | |
# dist b/t match center and prior's center | |
g_cxcy = (matched[:, :2] + matched[:, 2:]) / 2 - priors[:, :2] | |
# encode variance | |
g_cxcy /= (variances[0] * priors[:, 2:]) | |
# match wh / prior wh | |
g_wh = (matched[:, 2:] - matched[:, :2]) / priors[:, 2:] | |
g_wh = tf.math.log(g_wh) / variances[1] | |
# return target for smooth_l1_loss | |
return tf.concat([g_cxcy, g_wh], 1) # [num_priors,4] | |
def _encode_landm(matched, priors, variances): | |
"""Encode the variances from the priorbox layers into the ground truth | |
boxes we have matched (based on jaccard overlap) with the prior boxes. | |
Args: | |
matched: (tensor) Coords of ground truth for each prior in point-form | |
Shape: [num_priors, 10]. | |
priors: (tensor) Prior boxes in center-offset form | |
Shape: [num_priors,4]. | |
variances: (list[float]) Variances of priorboxes | |
Return: | |
encoded landm (tensor), Shape: [num_priors, 10] | |
""" | |
# dist b/t match center and prior's center | |
matched = tf.reshape(matched, [tf.shape(matched)[0], 5, 2]) | |
priors = tf.broadcast_to( | |
tf.expand_dims(priors, 1), [tf.shape(matched)[0], 5, 4]) | |
g_cxcy = matched[:, :, :2] - priors[:, :, :2] | |
# encode variance | |
g_cxcy /= (variances[0] * priors[:, :, 2:]) | |
# g_cxcy /= priors[:, :, 2:] | |
g_cxcy = tf.reshape(g_cxcy, [tf.shape(g_cxcy)[0], -1]) | |
# return target for smooth_l1_loss | |
return g_cxcy | |
def _point_form(boxes): | |
""" Convert prior_boxes to (xmin, ymin, xmax, ymax) | |
representation for comparison to point form ground truth data. | |
Args: | |
boxes: (tensor) center-size default boxes from priorbox layers. | |
Return: | |
boxes: (tensor) Converted xmin, ymin, xmax, ymax form of boxes. | |
""" | |
return tf.concat((boxes[:, :2] - boxes[:, 2:] / 2, | |
boxes[:, :2] + boxes[:, 2:] / 2), axis=1) | |
def _intersect(box_a, box_b): | |
""" We resize both tensors to [A,B,2]: | |
[A,2] -> [A,1,2] -> [A,B,2] | |
[B,2] -> [1,B,2] -> [A,B,2] | |
Then we compute the area of intersect between box_a and box_b. | |
Args: | |
box_a: (tensor) bounding boxes, Shape: [A,4]. | |
box_b: (tensor) bounding boxes, Shape: [B,4]. | |
Return: | |
(tensor) intersection area, Shape: [A,B]. | |
""" | |
A = tf.shape(box_a)[0] | |
B = tf.shape(box_b)[0] | |
max_xy = tf.minimum( | |
tf.broadcast_to(tf.expand_dims(box_a[:, 2:], 1), [A, B, 2]), | |
tf.broadcast_to(tf.expand_dims(box_b[:, 2:], 0), [A, B, 2])) | |
min_xy = tf.maximum( | |
tf.broadcast_to(tf.expand_dims(box_a[:, :2], 1), [A, B, 2]), | |
tf.broadcast_to(tf.expand_dims(box_b[:, :2], 0), [A, B, 2])) | |
inter = tf.maximum((max_xy - min_xy), tf.zeros_like(max_xy - min_xy)) | |
return inter[:, :, 0] * inter[:, :, 1] | |
def _jaccard(box_a, box_b): | |
"""Compute the jaccard overlap of two sets of boxes. The jaccard overlap | |
is simply the intersection over union of two boxes. Here we operate on | |
ground truth boxes and default boxes. | |
E.g.: | |
A β© B / A βͺ B = A β© B / (area(A) + area(B) - A β© B) | |
Args: | |
box_a: (tensor) Ground truth bounding boxes, Shape: [num_objects,4] | |
box_b: (tensor) Prior boxes from priorbox layers, Shape: [num_priors,4] | |
Return: | |
jaccard overlap: (tensor) Shape: [box_a.size(0), box_b.size(0)] | |
""" | |
inter = _intersect(box_a, box_b) | |
area_a = tf.broadcast_to( | |
tf.expand_dims( | |
(box_a[:, 2] - box_a[:, 0]) * (box_a[:, 3] - box_a[:, 1]), 1), | |
tf.shape(inter)) # [A,B] | |
area_b = tf.broadcast_to( | |
tf.expand_dims( | |
(box_b[:, 2] - box_b[:, 0]) * (box_b[:, 3] - box_b[:, 1]), 0), | |
tf.shape(inter)) # [A,B] | |
union = area_a + area_b - inter | |
return inter / union # [A,B] | |
############################################################################### | |
# Tensorflow Decoding # | |
############################################################################### | |
def decode_tf(labels, priors, variances=[0.1, 0.2]): | |
"""tensorflow decoding""" | |
bbox = _decode_bbox(labels[:, :4], priors, variances) | |
landm = _decode_landm(labels[:, 4:14], priors, variances) | |
landm_valid = labels[:, 14][:, tf.newaxis] | |
conf = labels[:, 15][:, tf.newaxis] | |
return tf.concat([bbox, landm, landm_valid, conf], axis=1) | |
def _decode_bbox(pre, priors, variances=[0.1, 0.2]): | |
"""Decode locations from predictions using priors to undo | |
the encoding we did for offset regression at train time. | |
Args: | |
pre (tensor): location predictions for loc layers, | |
Shape: [num_priors,4] | |
priors (tensor): Prior boxes in center-offset form. | |
Shape: [num_priors,4]. | |
variances: (list[float]) Variances of priorboxes | |
Return: | |
decoded bounding box predictions | |
""" | |
centers = priors[:, :2] + pre[:, :2] * variances[0] * priors[:, 2:] | |
sides = priors[:, 2:] * tf.math.exp(pre[:, 2:] * variances[1]) | |
return tf.concat([centers - sides / 2, centers + sides / 2], axis=1) | |
def _decode_landm(pre, priors, variances=[0.1, 0.2]): | |
"""Decode landm from predictions using priors to undo | |
the encoding we did for offset regression at train time. | |
Args: | |
pre (tensor): landm predictions for loc layers, | |
Shape: [num_priors,10] | |
priors (tensor): Prior boxes in center-offset form. | |
Shape: [num_priors,4]. | |
variances: (list[float]) Variances of priorboxes | |
Return: | |
decoded landm predictions | |
""" | |
landms = tf.concat( | |
[priors[:, :2] + pre[:, :2] * variances[0] * priors[:, 2:], | |
priors[:, :2] + pre[:, 2:4] * variances[0] * priors[:, 2:], | |
priors[:, :2] + pre[:, 4:6] * variances[0] * priors[:, 2:], | |
priors[:, :2] + pre[:, 6:8] * variances[0] * priors[:, 2:], | |
priors[:, :2] + pre[:, 8:10] * variances[0] * priors[:, 2:]], axis=1) | |
return landms | |