File size: 10,639 Bytes
69c590e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
import tensorflow as tf
from tensorflow.keras import Model
from tensorflow.keras.applications import MobileNetV2, ResNet50
from tensorflow.keras.layers import Input, Conv2D, ReLU, LeakyReLU
from retinaface.anchor import decode_tf, prior_box_tf


def _regularizer(weights_decay):
    """l2 regularizer"""
    return tf.keras.regularizers.l2(weights_decay)


def _kernel_init(scale=1.0, seed=None):
    """He normal initializer"""
    return tf.keras.initializers.he_normal()


class BatchNormalization(tf.keras.layers.BatchNormalization):
    """Make trainable=False freeze BN for real (the og version is sad).
       ref: https://github.com/zzh8829/yolov3-tf2
    """
    def __init__(self, axis=-1, momentum=0.9, epsilon=1e-5, center=True,
                 scale=True, name=None, **kwargs):
        super(BatchNormalization, self).__init__(
            axis=axis, momentum=momentum, epsilon=epsilon, center=center,
            scale=scale, name=name, **kwargs)

    def call(self, x, training=False):
        if training is None:
            training = tf.constant(False)
        training = tf.logical_and(training, self.trainable)

        return super().call(x, training)


def Backbone(backbone_type='ResNet50', use_pretrain=True):
    """Backbone Model"""
    weights = None
    if use_pretrain:
        weights = 'imagenet'

    def backbone(x):
        if backbone_type == 'ResNet50':
            extractor = ResNet50(
                input_shape=x.shape[1:], include_top=False, weights=weights)
            pick_layer1 = 80  # [80, 80, 512]
            pick_layer2 = 142  # [40, 40, 1024]
            pick_layer3 = 174  # [20, 20, 2048]
            preprocess = tf.keras.applications.resnet.preprocess_input
        elif backbone_type == 'MobileNetV2':
            extractor = MobileNetV2(
                input_shape=x.shape[1:], include_top=False, weights=weights)
            pick_layer1 = 54  # [80, 80, 32]
            pick_layer2 = 116  # [40, 40, 96]
            pick_layer3 = 143  # [20, 20, 160]
            preprocess = tf.keras.applications.mobilenet_v2.preprocess_input
        else:
            raise NotImplementedError(
                'Backbone type {} is not recognized.'.format(backbone_type))

        return Model(extractor.input,
                     (extractor.layers[pick_layer1].output,
                      extractor.layers[pick_layer2].output,
                      extractor.layers[pick_layer3].output),
                     name=backbone_type + '_extrator')(preprocess(x))

    return backbone


class ConvUnit(tf.keras.layers.Layer):
    """Conv + BN + Act"""
    def __init__(self, f, k, s, wd, act=None, **kwargs):
        super(ConvUnit, self).__init__(**kwargs)
        self.conv = Conv2D(filters=f, kernel_size=k, strides=s, padding='same',
                           kernel_initializer=_kernel_init(),
                           kernel_regularizer=_regularizer(wd),
                           use_bias=False)
        self.bn = BatchNormalization()

        if act is None:
            self.act_fn = tf.identity
        elif act == 'relu':
            self.act_fn = ReLU()
        elif act == 'lrelu':
            self.act_fn = LeakyReLU(0.1)
        else:
            raise NotImplementedError(
                'Activation function type {} is not recognized.'.format(act))

    def call(self, x):
        return self.act_fn(self.bn(self.conv(x)))


class FPN(tf.keras.layers.Layer):
    """Feature Pyramid Network"""
    def __init__(self, out_ch, wd, **kwargs):
        super(FPN, self).__init__(**kwargs)
        act = 'relu'
        self.out_ch = out_ch
        self.wd = wd
        if (out_ch <= 64):
            act = 'lrelu'

        self.output1 = ConvUnit(f=out_ch, k=1, s=1, wd=wd, act=act)
        self.output2 = ConvUnit(f=out_ch, k=1, s=1, wd=wd, act=act)
        self.output3 = ConvUnit(f=out_ch, k=1, s=1, wd=wd, act=act)
        self.merge1 = ConvUnit(f=out_ch, k=3, s=1, wd=wd, act=act)
        self.merge2 = ConvUnit(f=out_ch, k=3, s=1, wd=wd, act=act)

    def call(self, x):
        output1 = self.output1(x[0])  # [80, 80, out_ch]
        output2 = self.output2(x[1])  # [40, 40, out_ch]
        output3 = self.output3(x[2])  # [20, 20, out_ch]

        up_h, up_w = tf.shape(output2)[1], tf.shape(output2)[2]
        up3 = tf.image.resize(output3, [up_h, up_w], method='nearest')
        output2 = output2 + up3
        output2 = self.merge2(output2)

        up_h, up_w = tf.shape(output1)[1], tf.shape(output1)[2]
        up2 = tf.image.resize(output2, [up_h, up_w], method='nearest')
        output1 = output1 + up2
        output1 = self.merge1(output1)

        return output1, output2, output3
    
    def get_config(self):
        config = {
            'out_ch': self.out_ch,
            'wd': self.wd,
        }
        base_config = super(FPN, self).get_config()
        return dict(list(base_config.items()) + list(config.items()))


class SSH(tf.keras.layers.Layer):
    """Single Stage Headless Layer"""
    def __init__(self, out_ch, wd, **kwargs):
        super(SSH, self).__init__(**kwargs)
        assert out_ch % 4 == 0
        self.out_ch = out_ch
        self.wd = wd
        act = 'relu'
        if (out_ch <= 64):
            act = 'lrelu'

        self.conv_3x3 = ConvUnit(f=out_ch // 2, k=3, s=1, wd=wd, act=None)

        self.conv_5x5_1 = ConvUnit(f=out_ch // 4, k=3, s=1, wd=wd, act=act)
        self.conv_5x5_2 = ConvUnit(f=out_ch // 4, k=3, s=1, wd=wd, act=None)

        self.conv_7x7_2 = ConvUnit(f=out_ch // 4, k=3, s=1, wd=wd, act=act)
        self.conv_7x7_3 = ConvUnit(f=out_ch // 4, k=3, s=1, wd=wd, act=None)

        self.relu = ReLU()

    def call(self, x):
        conv_3x3 = self.conv_3x3(x)

        conv_5x5_1 = self.conv_5x5_1(x)
        conv_5x5 = self.conv_5x5_2(conv_5x5_1)

        conv_7x7_2 = self.conv_7x7_2(conv_5x5_1)
        conv_7x7 = self.conv_7x7_3(conv_7x7_2)

        output = tf.concat([conv_3x3, conv_5x5, conv_7x7], axis=3)
        output = self.relu(output)

        return output
    
    def get_config(self):
        config = {
            'out_ch': self.out_ch,
            'wd': self.wd,
        }
        base_config = super(SSH, self).get_config()
        return dict(list(base_config.items()) + list(config.items()))


class BboxHead(tf.keras.layers.Layer):
    """Bbox Head Layer"""
    def __init__(self, num_anchor, wd, **kwargs):
        super(BboxHead, self).__init__(**kwargs)
        self.num_anchor = num_anchor
        self.wd = wd
        self.conv = Conv2D(filters=num_anchor * 4, kernel_size=1, strides=1)

    def call(self, x):
        h, w = tf.shape(x)[1], tf.shape(x)[2]
        x = self.conv(x)

        return tf.reshape(x, [-1, h * w * self.num_anchor, 4])
    
    def get_config(self):
        config = {
            'num_anchor': self.num_anchor,
            'wd': self.wd,
        }
        base_config = super(BboxHead, self).get_config()
        return dict(list(base_config.items()) + list(config.items()))


class LandmarkHead(tf.keras.layers.Layer):
    """Landmark Head Layer"""
    def __init__(self, num_anchor, wd, name='LandmarkHead', **kwargs):
        super(LandmarkHead, self).__init__(name=name, **kwargs)
        self.num_anchor = num_anchor
        self.wd = wd
        self.conv = Conv2D(filters=num_anchor * 10, kernel_size=1, strides=1)

    def call(self, x):
        h, w = tf.shape(x)[1], tf.shape(x)[2]
        x = self.conv(x)

        return tf.reshape(x, [-1, h * w * self.num_anchor, 10])

    def get_config(self):
        config = {
            'num_anchor': self.num_anchor,
            'wd': self.wd,
        }
        base_config = super(LandmarkHead, self).get_config()
        return dict(list(base_config.items()) + list(config.items()))


class ClassHead(tf.keras.layers.Layer):
    """Class Head Layer"""
    def __init__(self, num_anchor, wd, name='ClassHead', **kwargs):
        super(ClassHead, self).__init__(name=name, **kwargs)
        self.num_anchor = num_anchor
        self.wd = wd
        self.conv = Conv2D(filters=num_anchor * 2, kernel_size=1, strides=1)

    def call(self, x):
        h, w = tf.shape(x)[1], tf.shape(x)[2]
        x = self.conv(x)

        return tf.reshape(x, [-1, h * w * self.num_anchor, 2])

    def get_config(self):
        config = {
            'num_anchor': self.num_anchor,
            'wd': self.wd,
        }
        base_config = super(ClassHead, self).get_config()
        return dict(list(base_config.items()) + list(config.items()))


def RetinaFaceModel(cfg, training=False, iou_th=0.4, score_th=0.02,
                    name='RetinaFaceModel'):
    """Retina Face Model"""
    input_size = cfg['input_size'] if training else None
    wd = cfg['weights_decay']
    out_ch = cfg['out_channel']
    num_anchor = len(cfg['min_sizes'][0])
    backbone_type = cfg['backbone_type']

    # define model
    x = inputs = Input([input_size, input_size, 3], name='input_image')

    x = Backbone(backbone_type=backbone_type)(x)

    fpn = FPN(out_ch=out_ch, wd=wd)(x)

    features = [SSH(out_ch=out_ch, wd=wd)(f)
                for i, f in enumerate(fpn)]

    bbox_regressions = tf.concat(
        [BboxHead(num_anchor, wd=wd)(f)
         for i, f in enumerate(features)], axis=1)
    landm_regressions = tf.concat(
        [LandmarkHead(num_anchor, wd=wd, name=f'LandmarkHead_{i}')(f)
         for i, f in enumerate(features)], axis=1)
    classifications = tf.concat(
        [ClassHead(num_anchor, wd=wd, name=f'ClassHead_{i}')(f)
         for i, f in enumerate(features)], axis=1)

    classifications = tf.keras.layers.Softmax(axis=-1)(classifications)

    if training:
        out = (bbox_regressions, landm_regressions, classifications)
    else:
        # only for batch size 1
        preds = tf.concat(  # [bboxes, landms, landms_valid, conf]
            [bbox_regressions[0],
             landm_regressions[0],
             tf.ones_like(classifications[0, :, 0][..., tf.newaxis]),
             classifications[0, :, 1][..., tf.newaxis]], 1)
        priors = prior_box_tf((tf.shape(inputs)[1], tf.shape(inputs)[2]), cfg['min_sizes'], cfg['steps'], cfg['clip'])
        decode_preds = decode_tf(preds, priors, cfg['variances'])

        selected_indices = tf.image.non_max_suppression(
            boxes=decode_preds[:, :4],
            scores=decode_preds[:, -1],
            max_output_size=tf.shape(decode_preds)[0],
            iou_threshold=iou_th,
            score_threshold=score_th)

        out = tf.gather(decode_preds, selected_indices)

    return Model(inputs, out, name=name), Model(inputs, [bbox_regressions, landm_regressions, classifications], name=name + '_bb_only')