Spaces:
Running
on
Zero
Running
on
Zero
import os | |
import warnings | |
import cv2 | |
import numpy as np | |
import torch | |
from huggingface_hub import hf_hub_download | |
from PIL import Image | |
from ..util import HWC3, resize_image | |
from .models.mbv2_mlsd_large import MobileV2_MLSD_Large | |
from .utils import pred_lines | |
class MLSDdetector: | |
def __init__(self, model): | |
self.model = model | |
def from_pretrained(cls, pretrained_model_or_path, filename=None, cache_dir=None, local_files_only=False): | |
if pretrained_model_or_path == "lllyasviel/ControlNet": | |
filename = filename or "annotator/ckpts/mlsd_large_512_fp32.pth" | |
else: | |
filename = filename or "mlsd_large_512_fp32.pth" | |
if os.path.isdir(pretrained_model_or_path): | |
model_path = os.path.join(pretrained_model_or_path, filename) | |
else: | |
model_path = hf_hub_download(pretrained_model_or_path, filename, cache_dir=cache_dir, local_files_only=local_files_only) | |
model = MobileV2_MLSD_Large() | |
model.load_state_dict(torch.load(model_path), strict=True) | |
model.eval() | |
return cls(model) | |
def to(self, device): | |
self.model.to(device) | |
return self | |
def __call__(self, input_image, thr_v=0.1, thr_d=0.1, detect_resolution=512, image_resolution=512, output_type="pil", **kwargs): | |
if "return_pil" in kwargs: | |
warnings.warn("return_pil is deprecated. Use output_type instead.", DeprecationWarning) | |
output_type = "pil" if kwargs["return_pil"] else "np" | |
if type(output_type) is bool: | |
warnings.warn("Passing `True` or `False` to `output_type` is deprecated and will raise an error in future versions") | |
if output_type: | |
output_type = "pil" | |
if not isinstance(input_image, np.ndarray): | |
input_image = np.array(input_image, dtype=np.uint8) | |
input_image = HWC3(input_image) | |
input_image = resize_image(input_image, detect_resolution) | |
assert input_image.ndim == 3 | |
img = input_image | |
img_output = np.zeros_like(img) | |
try: | |
with torch.no_grad(): | |
lines = pred_lines(img, self.model, [img.shape[0], img.shape[1]], thr_v, thr_d) | |
for line in lines: | |
x_start, y_start, x_end, y_end = [int(val) for val in line] | |
cv2.line(img_output, (x_start, y_start), (x_end, y_end), [255, 255, 255], 1) | |
except Exception as e: | |
pass | |
detected_map = img_output[:, :, 0] | |
detected_map = HWC3(detected_map) | |
img = resize_image(input_image, image_resolution) | |
H, W, C = img.shape | |
detected_map = cv2.resize(detected_map, (W, H), interpolation=cv2.INTER_LINEAR) | |
if output_type == "pil": | |
detected_map = Image.fromarray(detected_map) | |
return detected_map | |