Spaces:
Running
on
Zero
Running
on
Zero
import os | |
import cv2 | |
import numpy as np | |
import torch | |
from huggingface_hub import hf_hub_download | |
from PIL import Image | |
from ..util import HWC3, resize_image | |
from .leres.depthmap import estimateboost, estimateleres | |
from .leres.multi_depth_model_woauxi import RelDepthModel | |
from .leres.net_tools import strip_prefix_if_present | |
from .pix2pix.models.pix2pix4depth_model import Pix2Pix4DepthModel | |
from .pix2pix.options.test_options import TestOptions | |
class LeresDetector: | |
def __init__(self, model, pix2pixmodel): | |
self.model = model | |
self.pix2pixmodel = pix2pixmodel | |
def from_pretrained(cls, pretrained_model_or_path, filename=None, pix2pix_filename=None, cache_dir=None, local_files_only=False): | |
filename = filename or "res101.pth" | |
pix2pix_filename = pix2pix_filename or "latest_net_G.pth" | |
if os.path.isdir(pretrained_model_or_path): | |
model_path = os.path.join(pretrained_model_or_path, filename) | |
else: | |
model_path = hf_hub_download(pretrained_model_or_path, filename, cache_dir=cache_dir, local_files_only=local_files_only) | |
checkpoint = torch.load(model_path, map_location=torch.device('cpu')) | |
model = RelDepthModel(backbone='resnext101') | |
model.load_state_dict(strip_prefix_if_present(checkpoint['depth_model'], "module."), strict=True) | |
del checkpoint | |
if os.path.isdir(pretrained_model_or_path): | |
model_path = os.path.join(pretrained_model_or_path, pix2pix_filename) | |
else: | |
model_path = hf_hub_download(pretrained_model_or_path, pix2pix_filename, cache_dir=cache_dir, local_files_only=local_files_only) | |
opt = TestOptions().parse() | |
if not torch.cuda.is_available(): | |
opt.gpu_ids = [] # cpu mode | |
pix2pixmodel = Pix2Pix4DepthModel(opt) | |
pix2pixmodel.save_dir = os.path.dirname(model_path) | |
pix2pixmodel.load_networks('latest') | |
pix2pixmodel.eval() | |
return cls(model, pix2pixmodel) | |
def to(self, device): | |
self.model.to(device) | |
# TODO - refactor pix2pix implementation to support device migration | |
# self.pix2pixmodel.to(device) | |
return self | |
def __call__(self, input_image, thr_a=0, thr_b=0, boost=False, detect_resolution=512, image_resolution=512, output_type="pil"): | |
device = next(iter(self.model.parameters())).device | |
if not isinstance(input_image, np.ndarray): | |
input_image = np.array(input_image, dtype=np.uint8) | |
input_image = HWC3(input_image) | |
input_image = resize_image(input_image, detect_resolution) | |
assert input_image.ndim == 3 | |
height, width, dim = input_image.shape | |
with torch.no_grad(): | |
if boost: | |
depth = estimateboost(input_image, self.model, 0, self.pix2pixmodel, max(width, height)) | |
else: | |
depth = estimateleres(input_image, self.model, width, height) | |
numbytes=2 | |
depth_min = depth.min() | |
depth_max = depth.max() | |
max_val = (2**(8*numbytes))-1 | |
# check output before normalizing and mapping to 16 bit | |
if depth_max - depth_min > np.finfo("float").eps: | |
out = max_val * (depth - depth_min) / (depth_max - depth_min) | |
else: | |
out = np.zeros(depth.shape) | |
# single channel, 16 bit image | |
depth_image = out.astype("uint16") | |
# convert to uint8 | |
depth_image = cv2.convertScaleAbs(depth_image, alpha=(255.0/65535.0)) | |
# remove near | |
if thr_a != 0: | |
thr_a = ((thr_a/100)*255) | |
depth_image = cv2.threshold(depth_image, thr_a, 255, cv2.THRESH_TOZERO)[1] | |
# invert image | |
depth_image = cv2.bitwise_not(depth_image) | |
# remove bg | |
if thr_b != 0: | |
thr_b = ((thr_b/100)*255) | |
depth_image = cv2.threshold(depth_image, thr_b, 255, cv2.THRESH_TOZERO)[1] | |
detected_map = depth_image | |
detected_map = HWC3(detected_map) | |
img = resize_image(input_image, image_resolution) | |
H, W, C = img.shape | |
detected_map = cv2.resize(detected_map, (W, H), interpolation=cv2.INTER_LINEAR) | |
if output_type == "pil": | |
detected_map = Image.fromarray(detected_map) | |
return detected_map | |