Spaces:
Running
on
Zero
Running
on
Zero
img_scale = (640, 640) # width, height | |
# model settings | |
model = dict( | |
type='YOLOX', | |
data_preprocessor=dict( | |
type='DetDataPreprocessor', | |
pad_size_divisor=32, | |
batch_augments=[ | |
dict( | |
type='BatchSyncRandomResize', | |
random_size_range=(480, 800), | |
size_divisor=32, | |
interval=10) | |
]), | |
backbone=dict( | |
type='CSPDarknet', | |
deepen_factor=1.0, | |
widen_factor=1.0, | |
out_indices=(2, 3, 4), | |
use_depthwise=False, | |
spp_kernal_sizes=(5, 9, 13), | |
norm_cfg=dict(type='BN', momentum=0.03, eps=0.001), | |
act_cfg=dict(type='Swish'), | |
), | |
neck=dict( | |
type='YOLOXPAFPN', | |
in_channels=[256, 512, 1024], | |
out_channels=256, | |
num_csp_blocks=3, | |
use_depthwise=False, | |
upsample_cfg=dict(scale_factor=2, mode='nearest'), | |
norm_cfg=dict(type='BN', momentum=0.03, eps=0.001), | |
act_cfg=dict(type='Swish')), | |
bbox_head=dict( | |
type='YOLOXHead', | |
num_classes=80, | |
in_channels=256, | |
feat_channels=256, | |
stacked_convs=2, | |
strides=(8, 16, 32), | |
use_depthwise=False, | |
norm_cfg=dict(type='BN', momentum=0.03, eps=0.001), | |
act_cfg=dict(type='Swish'), | |
loss_cls=dict( | |
type='CrossEntropyLoss', | |
use_sigmoid=True, | |
reduction='sum', | |
loss_weight=1.0), | |
loss_bbox=dict( | |
type='IoULoss', | |
mode='square', | |
eps=1e-16, | |
reduction='sum', | |
loss_weight=5.0), | |
loss_obj=dict( | |
type='CrossEntropyLoss', | |
use_sigmoid=True, | |
reduction='sum', | |
loss_weight=1.0), | |
loss_l1=dict(type='L1Loss', reduction='sum', loss_weight=1.0)), | |
train_cfg=dict(assigner=dict(type='SimOTAAssigner', center_radius=2.5)), | |
# In order to align the source code, the threshold of the val phase is | |
# 0.01, and the threshold of the test phase is 0.001. | |
test_cfg=dict(score_thr=0.01, nms=dict(type='nms', iou_threshold=0.65))) | |
# dataset settings | |
data_root = 'data/coco/' | |
dataset_type = 'CocoDataset' | |
# Example to use different file client | |
# Method 1: simply set the data root and let the file I/O module | |
# automatically infer from prefix (not support LMDB and Memcache yet) | |
# data_root = 's3://openmmlab/datasets/detection/coco/' | |
# Method 2: Use `backend_args`, `file_client_args` in versions before 3.0.0rc6 | |
# backend_args = dict( | |
# backend='petrel', | |
# path_mapping=dict({ | |
# './data/': 's3://openmmlab/datasets/detection/', | |
# 'data/': 's3://openmmlab/datasets/detection/' | |
# })) | |
backend_args = None | |
train_pipeline = [ | |
dict(type='Mosaic', img_scale=img_scale, pad_val=114.0), | |
dict( | |
type='RandomAffine', | |
scaling_ratio_range=(0.1, 2), | |
# img_scale is (width, height) | |
border=(-img_scale[0] // 2, -img_scale[1] // 2)), | |
dict( | |
type='MixUp', | |
img_scale=img_scale, | |
ratio_range=(0.8, 1.6), | |
pad_val=114.0), | |
dict(type='YOLOXHSVRandomAug'), | |
dict(type='RandomFlip', prob=0.5), | |
# According to the official implementation, multi-scale | |
# training is not considered here but in the | |
# 'mmdet/models/detectors/yolox.py'. | |
# Resize and Pad are for the last 15 epochs when Mosaic, | |
# RandomAffine, and MixUp are closed by YOLOXModeSwitchHook. | |
dict(type='Resize', scale=img_scale, keep_ratio=True), | |
dict( | |
type='Pad', | |
pad_to_square=True, | |
# If the image is three-channel, the pad value needs | |
# to be set separately for each channel. | |
pad_val=dict(img=(114.0, 114.0, 114.0))), | |
dict(type='FilterAnnotations', min_gt_bbox_wh=(1, 1), keep_empty=False), | |
dict(type='PackDetInputs') | |
] | |
train_dataset = dict( | |
# use MultiImageMixDataset wrapper to support mosaic and mixup | |
type='MultiImageMixDataset', | |
dataset=dict( | |
type=dataset_type, | |
data_root=data_root, | |
ann_file='annotations/instances_train2017.json', | |
data_prefix=dict(img='train2017/'), | |
pipeline=[ | |
dict(type='LoadImageFromFile', backend_args=backend_args), | |
dict(type='LoadAnnotations', with_bbox=True) | |
], | |
filter_cfg=dict(filter_empty_gt=False, min_size=32), | |
backend_args=backend_args), | |
pipeline=train_pipeline) | |
test_pipeline = [ | |
dict(type='LoadImageFromFile', backend_args=backend_args), | |
dict(type='Resize', scale=img_scale, keep_ratio=True), | |
dict( | |
type='Pad', | |
pad_to_square=True, | |
pad_val=dict(img=(114.0, 114.0, 114.0))), | |
dict(type='LoadAnnotations', with_bbox=True), | |
dict( | |
type='PackDetInputs', | |
meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', | |
'scale_factor')) | |
] | |
train_dataloader = dict( | |
batch_size=8, | |
num_workers=4, | |
persistent_workers=True, | |
sampler=dict(type='DefaultSampler', shuffle=True), | |
dataset=train_dataset) | |
val_dataloader = dict( | |
batch_size=8, | |
num_workers=4, | |
persistent_workers=True, | |
drop_last=False, | |
sampler=dict(type='DefaultSampler', shuffle=False), | |
dataset=dict( | |
type=dataset_type, | |
data_root=data_root, | |
ann_file='annotations/instances_val2017.json', | |
data_prefix=dict(img='val2017/'), | |
test_mode=True, | |
pipeline=test_pipeline, | |
backend_args=backend_args)) | |
test_dataloader = val_dataloader | |
val_evaluator = dict( | |
type='CocoMetric', | |
ann_file=data_root + 'annotations/instances_val2017.json', | |
metric='bbox', | |
backend_args=backend_args) | |
test_evaluator = val_evaluator | |
# training settings | |
max_epochs = 300 | |
num_last_epochs = 15 | |
interval = 10 | |
train_cfg = dict(max_epochs=max_epochs, val_interval=interval) | |
# optimizer | |
# default 8 gpu | |
base_lr = 0.01 | |
optim_wrapper = dict( | |
type='OptimWrapper', | |
optimizer=dict( | |
type='SGD', lr=base_lr, momentum=0.9, weight_decay=5e-4, | |
nesterov=True), | |
paramwise_cfg=dict(norm_decay_mult=0., bias_decay_mult=0.)) | |
# learning rate | |
param_scheduler = [ | |
dict( | |
# use quadratic formula to warm up 5 epochs | |
# and lr is updated by iteration | |
# TODO: fix default scope in get function | |
type='mmdet.QuadraticWarmupLR', | |
by_epoch=True, | |
begin=0, | |
end=5, | |
convert_to_iter_based=True), | |
dict( | |
# use cosine lr from 5 to 285 epoch | |
type='CosineAnnealingLR', | |
eta_min=base_lr * 0.05, | |
begin=5, | |
T_max=max_epochs - num_last_epochs, | |
end=max_epochs - num_last_epochs, | |
by_epoch=True, | |
convert_to_iter_based=True), | |
dict( | |
# use fixed lr during last 15 epochs | |
type='ConstantLR', | |
by_epoch=True, | |
factor=1, | |
begin=max_epochs - num_last_epochs, | |
end=max_epochs, | |
) | |
] | |
default_hooks = dict( | |
checkpoint=dict( | |
interval=interval, | |
max_keep_ckpts=3 # only keep latest 3 checkpoints | |
)) | |
custom_hooks = [ | |
dict( | |
type='YOLOXModeSwitchHook', | |
num_last_epochs=num_last_epochs, | |
priority=48), | |
dict(type='SyncNormHook', priority=48), | |
dict( | |
type='EMAHook', | |
ema_type='ExpMomentumEMA', | |
momentum=0.0001, | |
update_buffers=True, | |
priority=49) | |
] | |
# NOTE: `auto_scale_lr` is for automatically scaling LR, | |
# USER SHOULD NOT CHANGE ITS VALUES. | |
# base_batch_size = (8 GPUs) x (8 samples per GPU) | |
auto_scale_lr = dict(base_batch_size=64) | |