feishen29's picture
Upload 179 files
29d49a9 verified
raw
history blame
3.71 kB
import os
import types
import warnings
import cv2
import numpy as np
import torch
import torchvision.transforms as transforms
from einops import rearrange
from huggingface_hub import hf_hub_download
from PIL import Image
from ..util import HWC3, resize_image
from .nets.NNET import NNET
# load model
def load_checkpoint(fpath, model):
ckpt = torch.load(fpath, map_location='cpu')['model']
load_dict = {}
for k, v in ckpt.items():
if k.startswith('module.'):
k_ = k.replace('module.', '')
load_dict[k_] = v
else:
load_dict[k] = v
model.load_state_dict(load_dict)
return model
class NormalBaeDetector:
def __init__(self, model):
self.model = model
self.norm = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
@classmethod
def from_pretrained(cls, pretrained_model_or_path, filename=None, cache_dir=None, local_files_only=False):
filename = filename or "scannet.pt"
if os.path.isdir(pretrained_model_or_path):
model_path = os.path.join(pretrained_model_or_path, filename)
else:
model_path = hf_hub_download(pretrained_model_or_path, filename, cache_dir=cache_dir, local_files_only=local_files_only)
args = types.SimpleNamespace()
args.mode = 'client'
args.architecture = 'BN'
args.pretrained = 'scannet'
args.sampling_ratio = 0.4
args.importance_ratio = 0.7
model = NNET(args)
model = load_checkpoint(model_path, model)
model.eval()
return cls(model)
def to(self, device):
self.model.to(device)
return self
def __call__(self, input_image, detect_resolution=512, image_resolution=512, output_type="pil", **kwargs):
if "return_pil" in kwargs:
warnings.warn("return_pil is deprecated. Use output_type instead.", DeprecationWarning)
output_type = "pil" if kwargs["return_pil"] else "np"
if type(output_type) is bool:
warnings.warn("Passing `True` or `False` to `output_type` is deprecated and will raise an error in future versions")
if output_type:
output_type = "pil"
device = next(iter(self.model.parameters())).device
if not isinstance(input_image, np.ndarray):
input_image = np.array(input_image, dtype=np.uint8)
input_image = HWC3(input_image)
input_image = resize_image(input_image, detect_resolution)
assert input_image.ndim == 3
image_normal = input_image
with torch.no_grad():
image_normal = torch.from_numpy(image_normal).float().to(device)
image_normal = image_normal / 255.0
image_normal = rearrange(image_normal, 'h w c -> 1 c h w')
image_normal = self.norm(image_normal)
normal = self.model(image_normal)
normal = normal[0][-1][:, :3]
# d = torch.sum(normal ** 2.0, dim=1, keepdim=True) ** 0.5
# d = torch.maximum(d, torch.ones_like(d) * 1e-5)
# normal /= d
normal = ((normal + 1) * 0.5).clip(0, 1)
normal = rearrange(normal[0], 'c h w -> h w c').cpu().numpy()
normal_image = (normal * 255.0).clip(0, 255).astype(np.uint8)
detected_map = normal_image
detected_map = HWC3(detected_map)
img = resize_image(input_image, image_resolution)
H, W, C = img.shape
detected_map = cv2.resize(detected_map, (W, H), interpolation=cv2.INTER_LINEAR)
if output_type == "pil":
detected_map = Image.fromarray(detected_map)
return detected_map