Spaces:
Running
on
Zero
Running
on
Zero
# Original from: https://github.com/xavysp/TEED | |
# TEED: is a Tiny but Efficient Edge Detection, it comes from the LDC-B3 | |
# with a Slightly modification | |
# LDC parameters: | |
# 155665 | |
# TED > 58K | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from .Fsmish import smish as Fsmish | |
from .Xsmish import Smish | |
def weight_init(m): | |
if isinstance(m, (nn.Conv2d,)): | |
torch.nn.init.xavier_normal_(m.weight, gain=1.0) | |
if m.bias is not None: | |
torch.nn.init.zeros_(m.bias) | |
# for fusion layer | |
if isinstance(m, (nn.ConvTranspose2d,)): | |
torch.nn.init.xavier_normal_(m.weight, gain=1.0) | |
if m.bias is not None: | |
torch.nn.init.zeros_(m.bias) | |
class CoFusion(nn.Module): | |
# from LDC | |
def __init__(self, in_ch, out_ch): | |
super(CoFusion, self).__init__() | |
self.conv1 = nn.Conv2d( | |
in_ch, 32, kernel_size=3, stride=1, padding=1 | |
) # before 64 | |
self.conv3 = nn.Conv2d( | |
32, out_ch, kernel_size=3, stride=1, padding=1 | |
) # before 64 instead of 32 | |
self.relu = nn.ReLU() | |
self.norm_layer1 = nn.GroupNorm(4, 32) # before 64 | |
def forward(self, x): | |
# fusecat = torch.cat(x, dim=1) | |
attn = self.relu(self.norm_layer1(self.conv1(x))) | |
attn = F.softmax(self.conv3(attn), dim=1) | |
return ((x * attn).sum(1)).unsqueeze(1) | |
class CoFusion2(nn.Module): | |
# TEDv14-3 | |
def __init__(self, in_ch, out_ch): | |
super(CoFusion2, self).__init__() | |
self.conv1 = nn.Conv2d( | |
in_ch, 32, kernel_size=3, stride=1, padding=1 | |
) # before 64 | |
# self.conv2 = nn.Conv2d(32, 32, kernel_size=3, | |
# stride=1, padding=1)# before 64 | |
self.conv3 = nn.Conv2d( | |
32, out_ch, kernel_size=3, stride=1, padding=1 | |
) # before 64 instead of 32 | |
self.smish = Smish() # nn.ReLU(inplace=True) | |
def forward(self, x): | |
# fusecat = torch.cat(x, dim=1) | |
attn = self.conv1(self.smish(x)) | |
attn = self.conv3(self.smish(attn)) # before , )dim=1) | |
# return ((fusecat * attn).sum(1)).unsqueeze(1) | |
return ((x * attn).sum(1)).unsqueeze(1) | |
class DoubleFusion(nn.Module): | |
# TED fusion before the final edge map prediction | |
def __init__(self, in_ch, out_ch): | |
super(DoubleFusion, self).__init__() | |
self.DWconv1 = nn.Conv2d( | |
in_ch, in_ch * 8, kernel_size=3, stride=1, padding=1, groups=in_ch | |
) # before 64 | |
self.PSconv1 = nn.PixelShuffle(1) | |
self.DWconv2 = nn.Conv2d( | |
24, 24 * 1, kernel_size=3, stride=1, padding=1, groups=24 | |
) # before 64 instead of 32 | |
self.AF = Smish() # XAF() #nn.Tanh()# XAF() # # Smish()# | |
def forward(self, x): | |
# fusecat = torch.cat(x, dim=1) | |
attn = self.PSconv1( | |
self.DWconv1(self.AF(x)) | |
) # #TEED best res TEDv14 [8, 32, 352, 352] | |
attn2 = self.PSconv1( | |
self.DWconv2(self.AF(attn)) | |
) # #TEED best res TEDv14[8, 3, 352, 352] | |
return Fsmish(((attn2 + attn).sum(1)).unsqueeze(1)) # TED best res | |
class _DenseLayer(nn.Sequential): | |
def __init__(self, input_features, out_features): | |
super(_DenseLayer, self).__init__() | |
( | |
self.add_module( | |
"conv1", | |
nn.Conv2d( | |
input_features, | |
out_features, | |
kernel_size=3, | |
stride=1, | |
padding=2, | |
bias=True, | |
), | |
), | |
) | |
(self.add_module("smish1", Smish()),) | |
self.add_module( | |
"conv2", | |
nn.Conv2d(out_features, out_features, kernel_size=3, stride=1, bias=True), | |
) | |
def forward(self, x): | |
x1, x2 = x | |
new_features = super(_DenseLayer, self).forward(Fsmish(x1)) # F.relu() | |
return 0.5 * (new_features + x2), x2 | |
class _DenseBlock(nn.Sequential): | |
def __init__(self, num_layers, input_features, out_features): | |
super(_DenseBlock, self).__init__() | |
for i in range(num_layers): | |
layer = _DenseLayer(input_features, out_features) | |
self.add_module("denselayer%d" % (i + 1), layer) | |
input_features = out_features | |
class UpConvBlock(nn.Module): | |
def __init__(self, in_features, up_scale): | |
super(UpConvBlock, self).__init__() | |
self.up_factor = 2 | |
self.constant_features = 16 | |
layers = self.make_deconv_layers(in_features, up_scale) | |
assert layers is not None, layers | |
self.features = nn.Sequential(*layers) | |
def make_deconv_layers(self, in_features, up_scale): | |
layers = [] | |
all_pads = [0, 0, 1, 3, 7] | |
for i in range(up_scale): | |
kernel_size = 2**up_scale | |
pad = all_pads[up_scale] # kernel_size-1 | |
out_features = self.compute_out_features(i, up_scale) | |
layers.append(nn.Conv2d(in_features, out_features, 1)) | |
layers.append(Smish()) | |
layers.append( | |
nn.ConvTranspose2d( | |
out_features, out_features, kernel_size, stride=2, padding=pad | |
) | |
) | |
in_features = out_features | |
return layers | |
def compute_out_features(self, idx, up_scale): | |
return 1 if idx == up_scale - 1 else self.constant_features | |
def forward(self, x): | |
return self.features(x) | |
class SingleConvBlock(nn.Module): | |
def __init__(self, in_features, out_features, stride, use_ac=False): | |
super(SingleConvBlock, self).__init__() | |
# self.use_bn = use_bs | |
self.use_ac = use_ac | |
self.conv = nn.Conv2d(in_features, out_features, 1, stride=stride, bias=True) | |
if self.use_ac: | |
self.smish = Smish() | |
def forward(self, x): | |
x = self.conv(x) | |
if self.use_ac: | |
return self.smish(x) | |
else: | |
return x | |
class DoubleConvBlock(nn.Module): | |
def __init__( | |
self, in_features, mid_features, out_features=None, stride=1, use_act=True | |
): | |
super(DoubleConvBlock, self).__init__() | |
self.use_act = use_act | |
if out_features is None: | |
out_features = mid_features | |
self.conv1 = nn.Conv2d(in_features, mid_features, 3, padding=1, stride=stride) | |
self.conv2 = nn.Conv2d(mid_features, out_features, 3, padding=1) | |
self.smish = Smish() # nn.ReLU(inplace=True) | |
def forward(self, x): | |
x = self.conv1(x) | |
x = self.smish(x) | |
x = self.conv2(x) | |
if self.use_act: | |
x = self.smish(x) | |
return x | |
class TED(nn.Module): | |
"""Definition of Tiny and Efficient Edge Detector | |
model | |
""" | |
def __init__(self): | |
super(TED, self).__init__() | |
self.block_1 = DoubleConvBlock( | |
3, | |
16, | |
16, | |
stride=2, | |
) | |
self.block_2 = DoubleConvBlock(16, 32, use_act=False) | |
self.dblock_3 = _DenseBlock(1, 32, 48) # [32,48,100,100] before (2, 32, 64) | |
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) | |
# skip1 connection, see fig. 2 | |
self.side_1 = SingleConvBlock(16, 32, 2) | |
# skip2 connection, see fig. 2 | |
self.pre_dense_3 = SingleConvBlock(32, 48, 1) # before (32, 64, 1) | |
# USNet | |
self.up_block_1 = UpConvBlock(16, 1) | |
self.up_block_2 = UpConvBlock(32, 1) | |
self.up_block_3 = UpConvBlock(48, 2) # (32, 64, 1) | |
self.block_cat = DoubleFusion(3, 3) # TEED: DoubleFusion | |
self.apply(weight_init) | |
def slice(self, tensor, slice_shape): | |
t_shape = tensor.shape | |
img_h, img_w = slice_shape | |
if img_w != t_shape[-1] or img_h != t_shape[2]: | |
new_tensor = F.interpolate( | |
tensor, size=(img_h, img_w), mode="bicubic", align_corners=False | |
) | |
else: | |
new_tensor = tensor | |
# tensor[..., :height, :width] | |
return new_tensor | |
def resize_input(self, tensor): | |
t_shape = tensor.shape | |
if t_shape[2] % 8 != 0 or t_shape[3] % 8 != 0: | |
img_w = ((t_shape[3] // 8) + 1) * 8 | |
img_h = ((t_shape[2] // 8) + 1) * 8 | |
new_tensor = F.interpolate( | |
tensor, size=(img_h, img_w), mode="bicubic", align_corners=False | |
) | |
else: | |
new_tensor = tensor | |
return new_tensor | |
def crop_bdcn(data1, h, w, crop_h, crop_w): | |
# Based on BDCN Implementation @ https://github.com/pkuCactus/BDCN | |
_, _, h1, w1 = data1.size() | |
assert h <= h1 and w <= w1 | |
data = data1[:, :, crop_h : crop_h + h, crop_w : crop_w + w] | |
return data | |
def forward(self, x, single_test=False): | |
assert x.ndim == 4, x.shape | |
# supose the image size is 352x352 | |
# Block 1 | |
block_1 = self.block_1(x) # [8,16,176,176] | |
block_1_side = self.side_1(block_1) # 16 [8,32,88,88] | |
# Block 2 | |
block_2 = self.block_2(block_1) # 32 # [8,32,176,176] | |
block_2_down = self.maxpool(block_2) # [8,32,88,88] | |
block_2_add = block_2_down + block_1_side # [8,32,88,88] | |
# Block 3 | |
block_3_pre_dense = self.pre_dense_3( | |
block_2_down | |
) # [8,64,88,88] block 3 L connection | |
block_3, _ = self.dblock_3([block_2_add, block_3_pre_dense]) # [8,64,88,88] | |
# upsampling blocks | |
out_1 = self.up_block_1(block_1) | |
out_2 = self.up_block_2(block_2) | |
out_3 = self.up_block_3(block_3) | |
results = [out_1, out_2, out_3] | |
# concatenate multiscale outputs | |
block_cat = torch.cat(results, dim=1) # Bx6xHxW | |
block_cat = self.block_cat(block_cat) # Bx1xHxW DoubleFusion | |
results.append(block_cat) | |
return results | |
if __name__ == "__main__": | |
batch_size = 8 | |
img_height = 352 | |
img_width = 352 | |
# device = "cuda" if torch.cuda.is_available() else "cpu" | |
device = "cpu" | |
input = torch.rand(batch_size, 3, img_height, img_width).to(device) | |
# target = torch.rand(batch_size, 1, img_height, img_width).to(device) | |
print(f"input shape: {input.shape}") | |
model = TED().to(device) | |
output = model(input) | |
print(f"output shapes: {[t.shape for t in output]}") | |
# for i in range(20000): | |
# print(i) | |
# output = model(input) | |
# loss = nn.MSELoss()(output[-1], target) | |
# loss.backward() | |