File size: 3,190 Bytes
29d49a9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
import os
import warnings

import cv2
import numpy as np
import torch
from einops import rearrange
from huggingface_hub import hf_hub_download
from PIL import Image

from ..util import HWC3, nms, resize_image, safe_step
from .model import pidinet


class PidiNetDetector:
    def __init__(self, netNetwork):
        self.netNetwork = netNetwork

    @classmethod
    def from_pretrained(cls, pretrained_model_or_path, filename=None, cache_dir=None, local_files_only=False):
        filename = filename or "table5_pidinet.pth"

        if os.path.isdir(pretrained_model_or_path):
            model_path = os.path.join(pretrained_model_or_path, filename)
        else:
            model_path = hf_hub_download(pretrained_model_or_path, filename, cache_dir=cache_dir, local_files_only=local_files_only)

        netNetwork = pidinet()
        netNetwork.load_state_dict({k.replace('module.', ''): v for k, v in torch.load(model_path)['state_dict'].items()})
        netNetwork.eval()

        return cls(netNetwork)

    def to(self, device):
        self.netNetwork.to(device)
        return self
    
    def __call__(self, input_image, detect_resolution=512, image_resolution=512, safe=False, output_type="pil", scribble=False, apply_filter=False, **kwargs):
        if "return_pil" in kwargs:
            warnings.warn("return_pil is deprecated. Use output_type instead.", DeprecationWarning)
            output_type = "pil" if kwargs["return_pil"] else "np"
        if type(output_type) is bool:
            warnings.warn("Passing `True` or `False` to `output_type` is deprecated and will raise an error in future versions")
            if output_type:
                output_type = "pil"

        device = next(iter(self.netNetwork.parameters())).device
        if not isinstance(input_image, np.ndarray):
            input_image = np.array(input_image, dtype=np.uint8)

        input_image = HWC3(input_image)
        input_image = resize_image(input_image, detect_resolution)
        assert input_image.ndim == 3
        input_image = input_image[:, :, ::-1].copy()
        with torch.no_grad():
            image_pidi = torch.from_numpy(input_image).float().to(device)
            image_pidi = image_pidi / 255.0
            image_pidi = rearrange(image_pidi, 'h w c -> 1 c h w')
            edge = self.netNetwork(image_pidi)[-1]
            edge = edge.cpu().numpy()
            if apply_filter:
                edge = edge > 0.5 
            if safe:
                edge = safe_step(edge)
            edge = (edge * 255.0).clip(0, 255).astype(np.uint8)

        detected_map = edge[0, 0]
        detected_map = HWC3(detected_map)

        img = resize_image(input_image, image_resolution)
        H, W, C = img.shape

        detected_map = cv2.resize(detected_map, (W, H), interpolation=cv2.INTER_LINEAR)
        
        if scribble:
            detected_map = nms(detected_map, 127, 3.0)
            detected_map = cv2.GaussianBlur(detected_map, (0, 0), 3.0)
            detected_map[detected_map > 4] = 255
            detected_map[detected_map < 255] = 0

        if output_type == "pil":
            detected_map = Image.fromarray(detected_map)

        return detected_map