Spaces:
Running
Running
File size: 9,503 Bytes
e6240a4 86f659b e6240a4 fe27809 e6240a4 14787cc c30a8ce 161c582 e6240a4 8f4308c e6240a4 4452beb e6240a4 86f659b 7b90c9c 8f4308c af56243 8f4308c af56243 e6240a4 cf64881 b61ef7b 2ad9d60 5e3a4fb e6240a4 4452beb e6240a4 c30a8ce e6240a4 86f659b 4452beb 86f659b 4452beb 86f659b 4452beb e6240a4 c30a8ce 50dcfcf c30a8ce e6240a4 c30a8ce 4c15790 c30a8ce c2ae871 c30a8ce e6240a4 c30a8ce 486e870 e6240a4 c30a8ce 4452beb e6240a4 4452beb e6240a4 4452beb e6240a4 4452beb e6240a4 c30a8ce e6240a4 f89f11b e6240a4 f89f11b e6240a4 486e870 e6240a4 486e870 e6240a4 14787cc af56243 14787cc af56243 e6240a4 14787cc e6240a4 958dc22 e6240a4 4452beb 486e870 4452beb a5d9cc2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 |
import streamlit as st
import sahi.utils.file
import sahi.utils.mmdet
from sahi import AutoDetectionModel
from PIL import Image
import random
from utils import sahi_mmdet_inference
from streamlit_image_comparison import image_comparison
MMDET_YOLOX_TINY_MODEL_URL = "https://huggingface.co/fcakyon/mmdet-yolox-tiny/resolve/main/yolox_tiny_8x8_300e_coco_20211124_171234-b4047906.pth"
MMDET_YOLOX_TINY_MODEL_PATH = "yolox.pt"
MMDET_YOLOX_TINY_CONFIG_URL = "https://huggingface.co/fcakyon/mmdet-yolox-tiny/raw/main/yolox_tiny_8x8_300e_coco.py"
MMDET_YOLOX_TINY_CONFIG_PATH = "config.py"
IMAGE_TO_URL = {
"apple_tree.jpg": "https://user-images.githubusercontent.com/34196005/142730935-2ace3999-a47b-49bb-83e0-2bdd509f1c90.jpg",
"highway.jpg": "https://user-images.githubusercontent.com/34196005/142730936-1b397756-52e5-43be-a949-42ec0134d5d8.jpg",
"highway2.jpg": "https://user-images.githubusercontent.com/34196005/142742871-bf485f84-0355-43a3-be86-96b44e63c3a2.jpg",
"highway3.jpg": "https://user-images.githubusercontent.com/34196005/142742872-1fefcc4d-d7e6-4c43-bbb7-6b5982f7e4ba.jpg",
"highway2-yolox.jpg": "https://user-images.githubusercontent.com/34196005/143309873-c0c1f31c-c42e-4a36-834e-da0a2336bb19.jpg",
"highway2-sahi.jpg": "https://user-images.githubusercontent.com/34196005/143309867-42841f5a-9181-4d22-b570-65f90f2da231.jpg",
}
@st.cache(allow_output_mutation=True, show_spinner=False)
def download_comparison_images():
sahi.utils.file.download_from_url(
"https://user-images.githubusercontent.com/34196005/143309873-c0c1f31c-c42e-4a36-834e-da0a2336bb19.jpg",
"highway2-yolox.jpg",
)
sahi.utils.file.download_from_url(
"https://user-images.githubusercontent.com/34196005/143309867-42841f5a-9181-4d22-b570-65f90f2da231.jpg",
"highway2-sahi.jpg",
)
@st.cache(allow_output_mutation=True, show_spinner=False)
def get_model():
sahi.utils.file.download_from_url(
MMDET_YOLOX_TINY_MODEL_URL,
MMDET_YOLOX_TINY_MODEL_PATH,
)
sahi.utils.file.download_from_url(
MMDET_YOLOX_TINY_CONFIG_URL,
MMDET_YOLOX_TINY_CONFIG_PATH,
)
detection_model = AutoDetectionModel.from_pretrained(
model_type='mmdet',
model_path=MMDET_YOLOX_TINY_MODEL_PATH,
config_path=MMDET_YOLOX_TINY_CONFIG_PATH,
confidence_threshold=0.5,
device="cpu",
)
return detection_model
class SpinnerTexts:
def __init__(self):
self.ind_history_list = []
self.text_list = [
"Meanwhile check out [MMDetection Colab notebook of SAHI](https://colab.research.google.com/github/obss/sahi/blob/main/demo/inference_for_mmdetection.ipynb)!",
"Meanwhile check out [YOLOv5 Colab notebook of SAHI](https://colab.research.google.com/github/obss/sahi/blob/main/demo/inference_for_yolov5.ipynb)!",
"Meanwhile check out [aerial object detection with SAHI](https://blog.ml6.eu/how-to-detect-small-objects-in-very-large-images-70234bab0f98?gi=b434299595d4)!",
"Meanwhile check out [COCO Utilities of SAHI](https://github.com/obss/sahi/blob/main/docs/COCO.md)!",
"Meanwhile check out [FiftyOne utilities of SAHI](https://github.com/obss/sahi#fiftyone-utilities)!",
"Meanwhile [give a Github star to SAHI](https://github.com/obss/sahi/stargazers)!",
"Meanwhile see [how easy is to install SAHI](https://github.com/obss/sahi#getting-started)!",
"Meanwhile check out [Medium blogpost of SAHI](https://medium.com/codable/sahi-a-vision-library-for-performing-sliced-inference-on-large-images-small-objects-c8b086af3b80)!",
"Meanwhile try out [YOLOv5 HF Spaces demo of SAHI](https://huggingface.co/spaces/fcakyon/sahi-yolov5)!",
]
def _store(self, ind):
if len(self.ind_history_list) == 6:
self.ind_history_list.pop(0)
self.ind_history_list.append(ind)
def get(self):
ind = 0
while ind in self.ind_history_list:
ind = random.randint(0, len(self.text_list) - 1)
self._store(ind)
return self.text_list[ind]
st.set_page_config(
page_title="Small Object Detection with SAHI + YOLOX",
page_icon="π",
layout="centered",
initial_sidebar_state="auto",
)
download_comparison_images()
if "last_spinner_texts" not in st.session_state:
st.session_state["last_spinner_texts"] = SpinnerTexts()
if "output_1" not in st.session_state:
st.session_state["output_1"] = Image.open("highway2-yolox.jpg")
if "output_2" not in st.session_state:
st.session_state["output_2"] = Image.open("highway2-sahi.jpg")
st.markdown(
"""
<h2 style='text-align: center'>
Small Object Detection <br />
with SAHI + YOLOX
</h2>
""",
unsafe_allow_html=True,
)
st.markdown(
"""
<p style='text-align: center'>
<a href='https://github.com/obss/sahi' target='_blank'>SAHI Github</a> | <a href='https://github.com/open-mmlab/mmdetection/tree/master/configs/yolox' target='_blank'>YOLOX Github</a> | <a href='https://huggingface.co/spaces/fcakyon/sahi-yolov5' target='_blank'>SAHI+YOLOv5 Demo</a>
<br />
Follow me for more! <a href='https://twitter.com/fcakyon' target='_blank'> <img src="https://img.icons8.com/color/48/000000/twitter--v1.png" height="30"></a><a href='https://github.com/fcakyon' target='_blank'><img src="https://img.icons8.com/fluency/48/000000/github.png" height="27"></a><a href='https://www.linkedin.com/in/fcakyon/' target='_blank'><img src="https://img.icons8.com/fluency/48/000000/linkedin.png" height="30"></a> <a href='https://fcakyon.medium.com/' target='_blank'><img src="https://img.icons8.com/ios-filled/48/000000/medium-monogram.png" height="26"></a>
</p>
""",
unsafe_allow_html=True,
)
st.write("##")
with st.expander("Usage"):
st.markdown(
"""
<p>
1. Upload or select the input image πΌοΈ
<br />
2. (Optional) Set SAHI parameters βοΈ
<br />
3. Press to "π Perform Prediction"
<br />
4. Enjoy sliding image comparison π₯
</p>
""",
unsafe_allow_html=True,
)
st.write("##")
col1, col2, col3 = st.columns([6, 1, 6])
with col1:
st.markdown(f"##### Set input image:")
# set input image by upload
image_file = st.file_uploader(
"Upload an image to test:", type=["jpg", "jpeg", "png"]
)
# set input image from exapmles
def slider_func(option):
option_to_id = {
"apple_tree.jpg": str(1),
"highway.jpg": str(2),
"highway2.jpg": str(3),
"highway3.jpg": str(4),
}
return option_to_id[option]
slider = st.select_slider(
"Or select from example images:",
options=["apple_tree.jpg", "highway.jpg", "highway2.jpg", "highway3.jpg"],
format_func=slider_func,
value="highway2.jpg",
)
# visualize input image
if image_file is not None:
image = Image.open(image_file)
else:
image = sahi.utils.cv.read_image_as_pil(IMAGE_TO_URL[slider])
st.image(image, width=300)
with col3:
st.markdown(f"##### Set SAHI parameters:")
slice_size = st.number_input("slice_size", min_value=256, value=512, step=256)
overlap_ratio = st.number_input(
"overlap_ratio", min_value=0.0, max_value=0.6, value=0.2, step=0.2
)
postprocess_type = st.selectbox(
"postprocess_type", options=["NMS", "GREEDYNMM"], index=0
)
postprocess_match_metric = st.selectbox(
"postprocess_match_metric", options=["IOU", "IOS"], index=0
)
postprocess_match_threshold = st.number_input(
"postprocess_match_threshold", value=0.5, step=0.1
)
postprocess_class_agnostic = st.checkbox("postprocess_class_agnostic", value=True)
col1, col2, col3 = st.columns([4, 3, 4])
with col2:
submit = st.button("π Perform Prediction")
if submit:
# perform prediction
with st.spinner(
text="Downloading model weight.. "
+ st.session_state["last_spinner_texts"].get()
):
detection_model = get_model()
image_size = 416
with st.spinner(
text="Performing prediction.. " + st.session_state["last_spinner_texts"].get()
):
output_1, output_2 = sahi_mmdet_inference(
image,
detection_model,
image_size=image_size,
slice_height=slice_size,
slice_width=slice_size,
overlap_height_ratio=overlap_ratio,
overlap_width_ratio=overlap_ratio,
postprocess_type=postprocess_type,
postprocess_match_metric=postprocess_match_metric,
postprocess_match_threshold=postprocess_match_threshold,
postprocess_class_agnostic=postprocess_class_agnostic,
)
st.session_state["output_1"] = output_1
st.session_state["output_2"] = output_2
st.markdown(f"##### YOLOX Standard vs SAHI Prediction:")
static_component = image_comparison(
img1=st.session_state["output_1"],
img2=st.session_state["output_2"],
label1="YOLOX",
label2="SAHI+YOLOX",
width=700,
starting_position=50,
show_labels=True,
make_responsive=True,
in_memory=True,
)
st.markdown(
"""
<p style='text-align: center'>
prepared with <a href='https://github.com/fcakyon/streamlit-image-comparison' target='_blank'>streamlit-image-comparison</a>
</p>
""",
unsafe_allow_html=True,
)
|