Spaces:
Running
Running
File size: 4,680 Bytes
c30a8ce 864cb02 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 |
import streamlit.components.v1 as components
import streamlit as st
import numpy
import sahi.predict
import sahi.utils
from PIL import Image
import pathlib
import os
import uuid
STREAMLIT_STATIC_PATH = pathlib.Path(st.__path__[0]) / "static"
def sahi_mmdet_inference(
image,
detection_model,
slice_height=512,
slice_width=512,
overlap_height_ratio=0.2,
overlap_width_ratio=0.2,
image_size=640,
postprocess_type="UNIONMERGE",
postprocess_match_metric="IOS",
postprocess_match_threshold=0.5,
postprocess_class_agnostic=False,
):
# standard inference
prediction_result_1 = sahi.predict.get_prediction(
image=image, detection_model=detection_model, image_size=image_size
)
visual_result_1 = sahi.utils.cv.visualize_object_predictions(
image=numpy.array(image),
object_prediction_list=prediction_result_1.object_prediction_list,
)
output_1 = Image.fromarray(visual_result_1["image"])
# sliced inference
prediction_result_2 = sahi.predict.get_sliced_prediction(
image=image,
detection_model=detection_model,
image_size=image_size,
slice_height=slice_height,
slice_width=slice_width,
overlap_height_ratio=overlap_height_ratio,
overlap_width_ratio=overlap_width_ratio,
postprocess_type=postprocess_type,
postprocess_match_metric=postprocess_match_metric,
postprocess_match_threshold=postprocess_match_threshold,
postprocess_class_agnostic=postprocess_class_agnostic,
)
visual_result_2 = sahi.utils.cv.visualize_object_predictions(
image=numpy.array(image),
object_prediction_list=prediction_result_2.object_prediction_list,
)
output_2 = Image.fromarray(visual_result_2["image"])
return output_1, output_2
def imagecompare(
img1: str,
img2: str,
label1: str = "1",
label2: str = "2",
width: int = 700,
show_labels: bool = True,
starting_position: int = 50,
make_responsive: bool = True,
):
"""Create a new juxtapose component.
Parameters
----------
img1: str, PosixPath, PIL.Image or URL
Input image to compare
img2: str, PosixPath, PIL.Image or URL
Input image to compare
label1: str or None
Label for image 1
label2: str or None
Label for image 2
width: int or None
Width of the component in px
show_labels: bool or None
Show given labels on images
starting_position: int or None
Starting position of the slider as percent (0-100)
make_responsive: bool or None
Enable responsive mode
Returns
-------
static_component: Boolean
Returns a static component with a timeline
"""
# prepare images
for file_ in os.listdir(STREAMLIT_STATIC_PATH):
if file_.endswith(".png") and "favicon" not in file_:
os.remove(str(STREAMLIT_STATIC_PATH / file_))
image_1_name = str(uuid.uuid4()) + ".png"
image_1_path = STREAMLIT_STATIC_PATH / image_1_name
image_1_path = str(image_1_path.resolve())
sahi.utils.cv.read_image_as_pil(img1).save(image_1_path)
image_2_name = str(uuid.uuid4()) + ".png"
image_2_path = STREAMLIT_STATIC_PATH / image_2_name
image_2_path = str(image_2_path.resolve())
sahi.utils.cv.read_image_as_pil(img2).save(image_2_path)
img_width, img_height = img1.size
h_to_w = img_height / img_width
height = width * h_to_w - 20
# load css + js
cdn_path = "https://cdn.knightlab.com/libs/juxtapose/latest"
css_block = f'<link rel="stylesheet" href="{cdn_path}/css/juxtapose.css">'
js_block = f'<script src="{cdn_path}/js/juxtapose.min.js"></script>'
# write html block
htmlcode = f"""
{css_block}
{js_block}
<div id="foo"style="height: '%100'; width: {width or '%100'};"></div>
<script>
slider = new juxtapose.JXSlider('#foo',
[
{{
src: '{image_1_name}',
label: '{label1}',
}},
{{
src: '{image_2_name}',
label: '{label2}',
}}
],
{{
animate: true,
showLabels: {'true' if show_labels else 'false'},
showCredits: true,
startingPosition: "{starting_position}%",
makeResponsive: {'true' if make_responsive else 'false'},
}});
</script>
"""
static_component = components.html(htmlcode, height=height, width=width)
return static_component, image_1_path, image_2_path
|