Spaces:
Runtime error
Runtime error
Upload 2 files
Browse files- app.py +70 -0
- requirements.txt +9 -0
app.py
ADDED
@@ -0,0 +1,70 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import AutoModel, AutoTokenizer
|
2 |
+
import streamlit as st
|
3 |
+
from streamlit_chat import message
|
4 |
+
|
5 |
+
|
6 |
+
st.set_page_config(
|
7 |
+
page_title="帛凡 ChatGLM-6b-fitness-RLHF 演示",
|
8 |
+
page_icon=":robot:"
|
9 |
+
)
|
10 |
+
|
11 |
+
|
12 |
+
@st.cache_resource
|
13 |
+
def get_model():
|
14 |
+
tokenizer = AutoTokenizer.from_pretrained("fb700/chatglm-fitness-RLHF/chatglm_rlhf", trust_remote_code=True)
|
15 |
+
#model = AutoModel.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True).half().cuda()
|
16 |
+
model = AutoModel.from_pretrained("D:\glm\chatglm_webui\chatglm-6b", trust_remote_code=True).quantize(8).half().cuda()
|
17 |
+
model = model.eval()
|
18 |
+
return tokenizer, model
|
19 |
+
|
20 |
+
|
21 |
+
MAX_TURNS = 20
|
22 |
+
MAX_BOXES = MAX_TURNS * 2
|
23 |
+
|
24 |
+
|
25 |
+
def predict(input, max_length, top_p, temperature, history=None):
|
26 |
+
tokenizer, model = get_model()
|
27 |
+
if history is None:
|
28 |
+
history = []
|
29 |
+
|
30 |
+
with container:
|
31 |
+
if len(history) > 0:
|
32 |
+
for i, (query, response) in enumerate(history):
|
33 |
+
message(query, avatar_style="big-smile", key=str(i) + "_user")
|
34 |
+
message(response, avatar_style="bottts", key=str(i))
|
35 |
+
|
36 |
+
message(input, avatar_style="big-smile", key=str(len(history)) + "_user")
|
37 |
+
st.write("AI正在回复:")
|
38 |
+
with st.empty():
|
39 |
+
for response, history in model.stream_chat(tokenizer, input, history, max_length=max_length, top_p=top_p,
|
40 |
+
temperature=temperature):
|
41 |
+
query, response = history[-1]
|
42 |
+
st.write(response)
|
43 |
+
|
44 |
+
return history
|
45 |
+
|
46 |
+
|
47 |
+
container = st.container()
|
48 |
+
|
49 |
+
# create a prompt text for the text generation
|
50 |
+
prompt_text = st.text_area(label="用户命令输入",
|
51 |
+
height = 100,
|
52 |
+
placeholder="请在这儿输入您的命令")
|
53 |
+
|
54 |
+
max_length = st.sidebar.slider(
|
55 |
+
'max_length', 0, 40960, 20480, step=1
|
56 |
+
)
|
57 |
+
top_p = st.sidebar.slider(
|
58 |
+
'top_p', 0.0, 1.0, 0.6, step=0.01
|
59 |
+
)
|
60 |
+
temperature = st.sidebar.slider(
|
61 |
+
'temperature', 0.0, 1.0, 0.95, step=0.01
|
62 |
+
)
|
63 |
+
|
64 |
+
if 'state' not in st.session_state:
|
65 |
+
st.session_state['state'] = []
|
66 |
+
|
67 |
+
if st.button("发送", key="predict"):
|
68 |
+
with st.spinner("AI正在思考,请稍等........"):
|
69 |
+
# text generation
|
70 |
+
st.session_state["state"] = predict(prompt_text, max_length, top_p, temperature, st.session_state["state"])
|
requirements.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
protobuf
|
2 |
+
transformers==4.27.1
|
3 |
+
cpm_kernels
|
4 |
+
torch>=1.10
|
5 |
+
gradio
|
6 |
+
mdtex2html
|
7 |
+
sentencepiece
|
8 |
+
accelerate
|
9 |
+
peft
|