File size: 5,984 Bytes
8c9c9c7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
import functools
import torch
import torch.nn as nn
from .base_function import LayerNorm2d, ADAINHourglass, FineEncoder, FineDecoder

def convert_flow_to_deformation(flow):
    r"""convert flow fields to deformations.

    Args:
        flow (tensor): Flow field obtained by the model
    Returns:
        deformation (tensor): The deformation used for warpping
    """
    b,c,h,w = flow.shape
    flow_norm = 2 * torch.cat([flow[:,:1,...]/(w-1),flow[:,1:,...]/(h-1)], 1)
    grid = make_coordinate_grid(flow)
    deformation = grid + flow_norm.permute(0,2,3,1)
    return deformation

def make_coordinate_grid(flow):
    r"""obtain coordinate grid with the same size as the flow filed.

    Args:
        flow (tensor): Flow field obtained by the model
    Returns:
        grid (tensor): The grid with the same size as the input flow
    """    
    b,c,h,w = flow.shape

    x = torch.arange(w).to(flow)
    y = torch.arange(h).to(flow)

    x = (2 * (x / (w - 1)) - 1)
    y = (2 * (y / (h - 1)) - 1)

    yy = y.view(-1, 1).repeat(1, w)
    xx = x.view(1, -1).repeat(h, 1)

    meshed = torch.cat([xx.unsqueeze_(2), yy.unsqueeze_(2)], 2)
    meshed = meshed.expand(b, -1, -1, -1)
    return meshed    

    
def warp_image(source_image, deformation):
    r"""warp the input image according to the deformation

    Args:
        source_image (tensor): source images to be warpped
        deformation (tensor): deformations used to warp the images; value in range (-1, 1)
    Returns:
        output (tensor): the warpped images
    """ 
    _, h_old, w_old, _ = deformation.shape
    _, _, h, w = source_image.shape
    if h_old != h or w_old != w:
        deformation = deformation.permute(0, 3, 1, 2)
        deformation = torch.nn.functional.interpolate(deformation, size=(h, w), mode='bilinear')
        deformation = deformation.permute(0, 2, 3, 1)
    return torch.nn.functional.grid_sample(source_image, deformation) 


class FaceGenerator(nn.Module):
    def __init__(
        self, 
        mapping_net, 
        warpping_net, 
        editing_net, 
        common
        ):  
        super(FaceGenerator, self).__init__()
        self.mapping_net = MappingNet(**mapping_net)
        self.warpping_net = WarpingNet(**warpping_net, **common)
        self.editing_net = EditingNet(**editing_net, **common)
 
    def forward(
        self, 
        input_image, 
        driving_source, 
        stage=None
        ):
        if stage == 'warp':
            descriptor = self.mapping_net(driving_source)
            output = self.warpping_net(input_image, descriptor)
        else:
            descriptor = self.mapping_net(driving_source)
            output = self.warpping_net(input_image, descriptor)
            output['fake_image'] = self.editing_net(input_image, output['warp_image'], descriptor)
        return output

class MappingNet(nn.Module):
    def __init__(self, coeff_nc, descriptor_nc, layer):
        super( MappingNet, self).__init__()

        self.layer = layer
        nonlinearity = nn.LeakyReLU(0.1)

        self.first = nn.Sequential(
            torch.nn.Conv1d(coeff_nc, descriptor_nc, kernel_size=7, padding=0, bias=True))

        for i in range(layer):
            net = nn.Sequential(nonlinearity,
                torch.nn.Conv1d(descriptor_nc, descriptor_nc, kernel_size=3, padding=0, dilation=3))
            setattr(self, 'encoder' + str(i), net)   

        self.pooling = nn.AdaptiveAvgPool1d(1)
        self.output_nc = descriptor_nc

    def forward(self, input_3dmm):
        out = self.first(input_3dmm)
        for i in range(self.layer):
            model = getattr(self, 'encoder' + str(i))
            out = model(out) + out[:,:,3:-3]
        out = self.pooling(out)
        return out   

class WarpingNet(nn.Module):
    def __init__(
        self, 
        image_nc, 
        descriptor_nc, 
        base_nc, 
        max_nc, 
        encoder_layer, 
        decoder_layer, 
        use_spect
        ):
        super( WarpingNet, self).__init__()

        nonlinearity = nn.LeakyReLU(0.1)
        norm_layer = functools.partial(LayerNorm2d, affine=True) 
        kwargs = {'nonlinearity':nonlinearity, 'use_spect':use_spect}

        self.descriptor_nc = descriptor_nc 
        self.hourglass = ADAINHourglass(image_nc, self.descriptor_nc, base_nc,
                                       max_nc, encoder_layer, decoder_layer, **kwargs)

        self.flow_out = nn.Sequential(norm_layer(self.hourglass.output_nc), 
                                      nonlinearity,
                                      nn.Conv2d(self.hourglass.output_nc, 2, kernel_size=7, stride=1, padding=3))

        self.pool = nn.AdaptiveAvgPool2d(1)

    def forward(self, input_image, descriptor):
        final_output={}
        output = self.hourglass(input_image, descriptor)
        final_output['flow_field'] = self.flow_out(output)

        deformation = convert_flow_to_deformation(final_output['flow_field'])
        final_output['warp_image'] = warp_image(input_image, deformation)
        return final_output


class EditingNet(nn.Module):
    def __init__(
        self, 
        image_nc, 
        descriptor_nc, 
        layer, 
        base_nc, 
        max_nc, 
        num_res_blocks, 
        use_spect):  
        super(EditingNet, self).__init__()

        nonlinearity = nn.LeakyReLU(0.1)
        norm_layer = functools.partial(LayerNorm2d, affine=True) 
        kwargs = {'norm_layer':norm_layer, 'nonlinearity':nonlinearity, 'use_spect':use_spect}
        self.descriptor_nc = descriptor_nc

        # encoder part
        self.encoder = FineEncoder(image_nc*2, base_nc, max_nc, layer, **kwargs)
        self.decoder = FineDecoder(image_nc, self.descriptor_nc, base_nc, max_nc, layer, num_res_blocks, **kwargs)

    def forward(self, input_image, warp_image, descriptor):
        x = torch.cat([input_image, warp_image], 1)
        x = self.encoder(x)
        gen_image = self.decoder(x, descriptor)
        return gen_image