|
from toolbox import CatchException, update_ui, ProxyNetworkActivate |
|
from .crazy_utils import request_gpt_model_in_new_thread_with_ui_alive, get_files_from_everything |
|
|
|
|
|
|
|
@CatchException |
|
def 知识库问答(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port): |
|
""" |
|
txt 输入栏用户输入的文本,例如需要翻译的一段话,再例如一个包含了待处理文件的路径 |
|
llm_kwargs gpt模型参数, 如温度和top_p等, 一般原样传递下去就行 |
|
plugin_kwargs 插件模型的参数,暂时没有用武之地 |
|
chatbot 聊天显示框的句柄,用于显示给用户 |
|
history 聊天历史,前情提要 |
|
system_prompt 给gpt的静默提醒 |
|
web_port 当前软件运行的端口号 |
|
""" |
|
history = [] |
|
chatbot.append(("这是什么功能?", "[Local Message] 从一批文件(txt, md, tex)中读取数据构建知识库, 然后进行问答。")) |
|
yield from update_ui(chatbot=chatbot, history=history) |
|
|
|
|
|
try: |
|
from zh_langchain import construct_vector_store |
|
from langchain.embeddings.huggingface import HuggingFaceEmbeddings |
|
from .crazy_utils import knowledge_archive_interface |
|
except Exception as e: |
|
chatbot.append( |
|
["依赖不足", |
|
"导入依赖失败。正在尝试自动安装,请查看终端的输出或耐心等待..."] |
|
) |
|
yield from update_ui(chatbot=chatbot, history=history) |
|
from .crazy_utils import try_install_deps |
|
try_install_deps(['zh_langchain==0.2.1']) |
|
|
|
|
|
if ("advanced_arg" in plugin_kwargs) and (plugin_kwargs["advanced_arg"] == ""): plugin_kwargs.pop("advanced_arg") |
|
kai_id = plugin_kwargs.get("advanced_arg", 'default') |
|
|
|
|
|
file_manifest = [] |
|
spl = ["txt", "doc", "docx", "email", "epub", "html", "json", "md", "msg", "pdf", "ppt", "pptx", "rtf"] |
|
for sp in spl: |
|
_, file_manifest_tmp, _ = get_files_from_everything(txt, type=f'.{sp}') |
|
file_manifest += file_manifest_tmp |
|
|
|
if len(file_manifest) == 0: |
|
chatbot.append(["没有找到任何可读取文件", "当前支持的格式包括: txt, md, docx, pptx, pdf, json等"]) |
|
yield from update_ui(chatbot=chatbot, history=history) |
|
return |
|
|
|
|
|
chatbot.append(['<br/>'.join(file_manifest), "正在预热文本向量化模组, 如果是第一次运行, 将消耗较长时间下载中文向量化模型..."]) |
|
yield from update_ui(chatbot=chatbot, history=history) |
|
print('Checking Text2vec ...') |
|
from langchain.embeddings.huggingface import HuggingFaceEmbeddings |
|
with ProxyNetworkActivate(): |
|
HuggingFaceEmbeddings(model_name="GanymedeNil/text2vec-large-chinese") |
|
|
|
|
|
chatbot.append(['<br/>'.join(file_manifest), "正在构建知识库..."]) |
|
yield from update_ui(chatbot=chatbot, history=history) |
|
print('Establishing knowledge archive ...') |
|
with ProxyNetworkActivate(): |
|
kai = knowledge_archive_interface() |
|
kai.feed_archive(file_manifest=file_manifest, id=kai_id) |
|
kai_files = kai.get_loaded_file() |
|
kai_files = '<br/>'.join(kai_files) |
|
|
|
|
|
|
|
|
|
|
|
chatbot.append(['构建完成', f"当前知识库内的有效文件:\n\n---\n\n{kai_files}\n\n---\n\n请切换至“知识库问答”插件进行知识库访问, 或者使用此插件继续上传更多文件。"]) |
|
yield from update_ui(chatbot=chatbot, history=history) |
|
|
|
@CatchException |
|
def 读取知识库作答(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port=-1): |
|
|
|
try: |
|
from zh_langchain import construct_vector_store |
|
from langchain.embeddings.huggingface import HuggingFaceEmbeddings |
|
from .crazy_utils import knowledge_archive_interface |
|
except Exception as e: |
|
chatbot.append(["依赖不足", "导入依赖失败。正在尝试自动安装,请查看终端的输出或耐心等待..."]) |
|
yield from update_ui(chatbot=chatbot, history=history) |
|
from .crazy_utils import try_install_deps |
|
try_install_deps(['zh_langchain==0.2.1']) |
|
|
|
|
|
kai = knowledge_archive_interface() |
|
|
|
if 'langchain_plugin_embedding' in chatbot._cookies: |
|
resp, prompt = kai.answer_with_archive_by_id(txt, chatbot._cookies['langchain_plugin_embedding']) |
|
else: |
|
if ("advanced_arg" in plugin_kwargs) and (plugin_kwargs["advanced_arg"] == ""): plugin_kwargs.pop("advanced_arg") |
|
kai_id = plugin_kwargs.get("advanced_arg", 'default') |
|
resp, prompt = kai.answer_with_archive_by_id(txt, kai_id) |
|
|
|
chatbot.append((txt, '[Local Message] ' + prompt)) |
|
yield from update_ui(chatbot=chatbot, history=history) |
|
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive( |
|
inputs=prompt, inputs_show_user=txt, |
|
llm_kwargs=llm_kwargs, chatbot=chatbot, history=[], |
|
sys_prompt=system_prompt |
|
) |
|
history.extend((prompt, gpt_say)) |
|
yield from update_ui(chatbot=chatbot, history=history) |
|
|