|
from toolbox import CatchException, update_ui, gen_time_str |
|
from .crazy_utils import request_gpt_model_in_new_thread_with_ui_alive |
|
from .crazy_utils import input_clipping |
|
|
|
|
|
prompt = """ |
|
I have to achieve some functionalities by calling one of the functions below. |
|
Your job is to find the correct funtion to use to satisfy my requirement, |
|
and then write python code to call this function with correct parameters. |
|
|
|
These are functions you are allowed to choose from: |
|
1. |
|
功能描述: 总结音视频内容 |
|
调用函数: ConcludeAudioContent(txt, llm_kwargs) |
|
参数说明: |
|
txt: 音频文件的路径 |
|
llm_kwargs: 模型参数, 永远给定None |
|
2. |
|
功能描述: 将每次对话记录写入Markdown格式的文件中 |
|
调用函数: WriteMarkdown() |
|
3. |
|
功能描述: 将指定目录下的PDF文件从英文翻译成中文 |
|
调用函数: BatchTranslatePDFDocuments_MultiThreaded(txt, llm_kwargs) |
|
参数说明: |
|
txt: PDF文件所在的路径 |
|
llm_kwargs: 模型参数, 永远给定None |
|
4. |
|
功能描述: 根据文本使用GPT模型生成相应的图像 |
|
调用函数: ImageGeneration(txt, llm_kwargs) |
|
参数说明: |
|
txt: 图像生成所用到的提示文本 |
|
llm_kwargs: 模型参数, 永远给定None |
|
5. |
|
功能描述: 对输入的word文档进行摘要生成 |
|
调用函数: SummarizingWordDocuments(input_path, output_path) |
|
参数说明: |
|
input_path: 待处理的word文档路径 |
|
output_path: 摘要生成后的文档路径 |
|
|
|
|
|
You should always anwser with following format: |
|
---------------- |
|
Code: |
|
``` |
|
class AutoAcademic(object): |
|
def __init__(self): |
|
self.selected_function = "FILL_CORRECT_FUNCTION_HERE" # e.g., "GenerateImage" |
|
self.txt = "FILL_MAIN_PARAMETER_HERE" # e.g., "荷叶上的蜻蜓" |
|
self.llm_kwargs = None |
|
``` |
|
Explanation: |
|
只有GenerateImage和生成图像相关, 因此选择GenerateImage函数。 |
|
---------------- |
|
|
|
Now, this is my requirement: |
|
|
|
""" |
|
def get_fn_lib(): |
|
return { |
|
"BatchTranslatePDFDocuments_MultiThreaded": ("crazy_functions.批量翻译PDF文档_多线程", "批量翻译PDF文档"), |
|
"SummarizingWordDocuments": ("crazy_functions.总结word文档", "总结word文档"), |
|
"ImageGeneration": ("crazy_functions.图片生成", "图片生成"), |
|
"TranslateMarkdownFromEnglishToChinese": ("crazy_functions.批量Markdown翻译", "Markdown中译英"), |
|
"SummaryAudioVideo": ("crazy_functions.总结音视频", "总结音视频"), |
|
} |
|
|
|
def inspect_dependency(chatbot, history): |
|
return True |
|
|
|
def eval_code(code, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port): |
|
import subprocess, sys, os, shutil, importlib |
|
|
|
with open('gpt_log/void_terminal_runtime.py', 'w', encoding='utf8') as f: |
|
f.write(code) |
|
|
|
try: |
|
AutoAcademic = getattr(importlib.import_module('gpt_log.void_terminal_runtime', 'AutoAcademic'), 'AutoAcademic') |
|
|
|
auto_dict = AutoAcademic() |
|
selected_function = auto_dict.selected_function |
|
txt = auto_dict.txt |
|
fp, fn = get_fn_lib()[selected_function] |
|
fn_plugin = getattr(importlib.import_module(fp, fn), fn) |
|
yield from fn_plugin(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port) |
|
except: |
|
from toolbox import trimmed_format_exc |
|
chatbot.append(["执行错误", f"\n```\n{trimmed_format_exc()}\n```\n"]) |
|
yield from update_ui(chatbot=chatbot, history=history) |
|
|
|
def get_code_block(reply): |
|
import re |
|
pattern = r"```([\s\S]*?)```" |
|
matches = re.findall(pattern, reply) |
|
if len(matches) != 1: |
|
raise RuntimeError("GPT is not generating proper code.") |
|
return matches[0].strip('python') |
|
|
|
@CatchException |
|
def 终端(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port): |
|
""" |
|
txt 输入栏用户输入的文本, 例如需要翻译的一段话, 再例如一个包含了待处理文件的路径 |
|
llm_kwargs gpt模型参数, 如温度和top_p等, 一般原样传递下去就行 |
|
plugin_kwargs 插件模型的参数, 暂时没有用武之地 |
|
chatbot 聊天显示框的句柄, 用于显示给用户 |
|
history 聊天历史, 前情提要 |
|
system_prompt 给gpt的静默提醒 |
|
web_port 当前软件运行的端口号 |
|
""" |
|
|
|
history = [] |
|
|
|
|
|
chatbot.append(["函数插件功能?", "根据自然语言执行插件命令, 作者: binary-husky, 插件初始化中 ..."]) |
|
yield from update_ui(chatbot=chatbot, history=history) |
|
|
|
|
|
|
|
|
|
|
|
|
|
i_say = prompt + txt |
|
|
|
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive( |
|
inputs=i_say, inputs_show_user=txt, |
|
llm_kwargs=llm_kwargs, chatbot=chatbot, history=[], |
|
sys_prompt="" |
|
) |
|
|
|
|
|
code = get_code_block(gpt_say) |
|
yield from eval_code(code, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port) |
|
|