faustoont's picture
Upload app.py
673b9b3
import streamlit as st
import pickle
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.linear_model import PassiveAggressiveClassifier
model = PassiveAggressiveClassifier(max_iter=50)
with open('tfidf.pickle', 'rb') as f:
tfidf = pickle.load(f)
PAGE_CONFIG = {"page_title":"My first ML app","page_icon":":smiley:","layout":"centered"}
st.set_page_config(**PAGE_CONFIG)
st.title("My first ML app")
st.subheader("Here is my awesome learning result")
menu = ["Home","About my startup"]
choice = st.sidebar.selectbox('Menu',menu)
if choice == 'Home':
st.subheader("Let's get down to the details.")
title = st.text_input('News title', 'Queen Elizabeth buys an Unicorn')
with open('model.pkl', 'rb') as f:
model = pickle.load(f)
def predict_news(news_text):
prediction = model.predict(tfidf.transform([news_text]))
if prediction[0] == 1:
return("Possibly fake news")
else:
return("Possibly real news")
result = predict_news(title)
st.write('Fake classification: ', result)