clementsan commited on
Commit
88fa380
·
1 Parent(s): 1e93bea

Add Mixtral-8x7B-Instruct-v0.1 model

Browse files
Files changed (1) hide show
  1. app.py +9 -3
app.py CHANGED
@@ -20,6 +20,7 @@ import accelerate
20
 
21
  # default_persist_directory = './chroma_HF/'
22
 
 
23
  llm_name1 = "mistralai/Mistral-7B-Instruct-v0.2"
24
  llm_name2 = "mistralai/Mistral-7B-Instruct-v0.1"
25
  llm_name3 = "meta-llama/Llama-2-7b-chat-hf"
@@ -27,7 +28,7 @@ llm_name4 = "microsoft/phi-2"
27
  llm_name5 = "mosaicml/mpt-7b-instruct"
28
  llm_name6 = "tiiuae/falcon-7b-instruct"
29
  llm_name7 = "google/flan-t5-xxl"
30
- list_llm = [llm_name1, llm_name2, llm_name3, llm_name4, llm_name5, llm_name6, llm_name7]
31
  list_llm_simple = [os.path.basename(llm) for llm in list_llm]
32
 
33
  # Load PDF document and create doc splits
@@ -62,7 +63,7 @@ def create_db(splits):
62
  def load_db():
63
  embedding = HuggingFaceEmbeddings()
64
  vectordb = Chroma(
65
- persist_directory=default_persist_directory,
66
  embedding_function=embedding)
67
  return vectordb
68
 
@@ -95,7 +96,12 @@ def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db, pr
95
  # Use of trust_remote_code as model_kwargs
96
  # Warning: langchain issue
97
  # URL: https://github.com/langchain-ai/langchain/issues/6080
98
- if llm_model == "microsoft/phi-2":
 
 
 
 
 
99
  llm = HuggingFaceHub(
100
  repo_id=llm_model,
101
  model_kwargs={"temperature": temperature, "max_new_tokens": max_tokens, "top_k": top_k, "trust_remote_code": True, "torch_dtype": "auto"}
 
20
 
21
  # default_persist_directory = './chroma_HF/'
22
 
23
+ llm_name0 = "mistralai/Mixtral-8x7B-Instruct-v0.1"
24
  llm_name1 = "mistralai/Mistral-7B-Instruct-v0.2"
25
  llm_name2 = "mistralai/Mistral-7B-Instruct-v0.1"
26
  llm_name3 = "meta-llama/Llama-2-7b-chat-hf"
 
28
  llm_name5 = "mosaicml/mpt-7b-instruct"
29
  llm_name6 = "tiiuae/falcon-7b-instruct"
30
  llm_name7 = "google/flan-t5-xxl"
31
+ list_llm = [llm_name0, llm_name1, llm_name2, llm_name3, llm_name4, llm_name5, llm_name6, llm_name7]
32
  list_llm_simple = [os.path.basename(llm) for llm in list_llm]
33
 
34
  # Load PDF document and create doc splits
 
63
  def load_db():
64
  embedding = HuggingFaceEmbeddings()
65
  vectordb = Chroma(
66
+ # persist_directory=default_persist_directory,
67
  embedding_function=embedding)
68
  return vectordb
69
 
 
96
  # Use of trust_remote_code as model_kwargs
97
  # Warning: langchain issue
98
  # URL: https://github.com/langchain-ai/langchain/issues/6080
99
+ if llm_model == "mistralai/Mixtral-8x7B-Instruct-v0.1":
100
+ llm = HuggingFaceHub(
101
+ repo_id=llm_model,
102
+ model_kwargs={"temperature": temperature, "max_new_tokens": max_tokens, "top_k": top_k, "load_in_8bit": True}
103
+ )
104
+ elif llm_model == "microsoft/phi-2":
105
  llm = HuggingFaceHub(
106
  repo_id=llm_model,
107
  model_kwargs={"temperature": temperature, "max_new_tokens": max_tokens, "top_k": top_k, "trust_remote_code": True, "torch_dtype": "auto"}