Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,125 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import openai
|
3 |
+
|
4 |
+
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
5 |
+
os.environ["OPENAI_API_KEY"]
|
6 |
+
os.environ["GROQ_API_KEY"]
|
7 |
+
|
8 |
+
global agent
|
9 |
+
|
10 |
+
|
11 |
+
def create_agent():
|
12 |
+
|
13 |
+
from langchain_groq import ChatGroq
|
14 |
+
from langchain.chains.conversation.memory import ConversationSummaryBufferMemory
|
15 |
+
from langchain.chains import ConversationChain
|
16 |
+
|
17 |
+
global agent
|
18 |
+
|
19 |
+
llm = ChatGroq(temperature=0, model_name="mixtral-8x7b-32768")
|
20 |
+
memory = ConversationSummaryBufferMemory(llm=llm, max_token_limit=1000)
|
21 |
+
agent = ConversationChain(llm=llm, memory=memory, verbose=True)
|
22 |
+
|
23 |
+
return "Successful!"
|
24 |
+
|
25 |
+
|
26 |
+
def formatted_response(docs, question, response, state):
|
27 |
+
|
28 |
+
formatted_output = response + "\n\nSources"
|
29 |
+
|
30 |
+
for i, doc in enumerate(docs):
|
31 |
+
source_info = doc.metadata.get("source", "Unknown source")
|
32 |
+
page_info = doc.metadata.get("page", None)
|
33 |
+
|
34 |
+
doc_name = source_info.split("/")[-1].strip()
|
35 |
+
|
36 |
+
if page_info is not None:
|
37 |
+
formatted_output += f"\n{doc_name}\tpage no {page_info}"
|
38 |
+
else:
|
39 |
+
formatted_output += f"\n{doc_name}"
|
40 |
+
|
41 |
+
state.append((question, formatted_output))
|
42 |
+
return state, state
|
43 |
+
|
44 |
+
|
45 |
+
def search_docs(prompt, question, state,k):
|
46 |
+
|
47 |
+
from langchain_openai import OpenAIEmbeddings
|
48 |
+
from langchain.vectorstores import FAISS
|
49 |
+
from langchain.callbacks import get_openai_callback
|
50 |
+
|
51 |
+
global agent
|
52 |
+
agent = agent
|
53 |
+
|
54 |
+
state = state or []
|
55 |
+
|
56 |
+
embeddings = OpenAIEmbeddings()
|
57 |
+
docs_db = FAISS.load_local(
|
58 |
+
"/content/drive/MyDrive/Art Story Merged DB",
|
59 |
+
embeddings,
|
60 |
+
allow_dangerous_deserialization=True
|
61 |
+
)
|
62 |
+
docs = docs_db.similarity_search(question,int(k))
|
63 |
+
|
64 |
+
prompt += "\n\n"
|
65 |
+
prompt += question
|
66 |
+
prompt += "\n\n"
|
67 |
+
prompt += str(docs)
|
68 |
+
|
69 |
+
with get_openai_callback() as cb:
|
70 |
+
response = agent.predict(input=prompt)
|
71 |
+
print(cb)
|
72 |
+
|
73 |
+
return formatted_response(docs, question, response, state)
|
74 |
+
|
75 |
+
import gradio as gr
|
76 |
+
|
77 |
+
css = """
|
78 |
+
.col{
|
79 |
+
max-width: 75%;
|
80 |
+
margin: 0 auto;
|
81 |
+
display: flex;
|
82 |
+
flex-direction: column;
|
83 |
+
justify-content: center;
|
84 |
+
align-items: center;
|
85 |
+
}
|
86 |
+
"""
|
87 |
+
|
88 |
+
with gr.Blocks(css=css) as demo:
|
89 |
+
gr.Markdown("## <center>Your AI Medical Assistant</center>")
|
90 |
+
|
91 |
+
with gr.Tab("Your AI Assistant"):
|
92 |
+
with gr.Column(elem_classes="col"):
|
93 |
+
|
94 |
+
with gr.Tab("Query Documents"):
|
95 |
+
with gr.Column():
|
96 |
+
create_agent_button = gr.Button("Create Agent")
|
97 |
+
create_agent_output = gr.Textbox(label="Output")
|
98 |
+
|
99 |
+
docs_prompt_input = gr.Textbox(label="Custom Prompt")
|
100 |
+
k=gr.Textbox(label="Number of Chunks")
|
101 |
+
|
102 |
+
docs_chatbot = gr.Chatbot(label="Chats")
|
103 |
+
docs_state = gr.State()
|
104 |
+
|
105 |
+
docs_search_input = gr.Textbox(label="Question")
|
106 |
+
docs_search_button = gr.Button("Search")
|
107 |
+
|
108 |
+
gr.ClearButton(
|
109 |
+
[docs_prompt_input, docs_search_input, create_agent_output]
|
110 |
+
)
|
111 |
+
|
112 |
+
#########################################################################################################
|
113 |
+
|
114 |
+
create_agent_button.click(create_agent, inputs=None, outputs=create_agent_output)
|
115 |
+
|
116 |
+
docs_search_button.click(
|
117 |
+
search_docs,
|
118 |
+
inputs=[docs_prompt_input, docs_search_input, docs_state,k],
|
119 |
+
outputs=[docs_chatbot, docs_state],
|
120 |
+
)
|
121 |
+
|
122 |
+
#########################################################################################################
|
123 |
+
|
124 |
+
demo.queue()
|
125 |
+
demo.launch(debug=True)
|