Spaces:
Runtime error
Runtime error
farcasclaudiu
commited on
Commit
·
f97bb61
1
Parent(s):
ad1c4b9
upgrade
Browse files- app.ipynb +125 -0
- app.py +44 -4
- old_app.py +9 -0
app.ipynb
ADDED
@@ -0,0 +1,125 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "markdown",
|
5 |
+
"metadata": {},
|
6 |
+
"source": [
|
7 |
+
"Dogs vs Cats"
|
8 |
+
]
|
9 |
+
},
|
10 |
+
{
|
11 |
+
"cell_type": "code",
|
12 |
+
"execution_count": null,
|
13 |
+
"metadata": {},
|
14 |
+
"outputs": [],
|
15 |
+
"source": [
|
16 |
+
"#|default_exp app\n",
|
17 |
+
"!pip install gradio"
|
18 |
+
]
|
19 |
+
},
|
20 |
+
{
|
21 |
+
"cell_type": "code",
|
22 |
+
"execution_count": null,
|
23 |
+
"metadata": {},
|
24 |
+
"outputs": [],
|
25 |
+
"source": [
|
26 |
+
"#|export\n",
|
27 |
+
"from fastai.vision.all import *\n",
|
28 |
+
"import gradio as gr\n",
|
29 |
+
"\n",
|
30 |
+
"def is_cat(x): return x[0].isupper()"
|
31 |
+
]
|
32 |
+
},
|
33 |
+
{
|
34 |
+
"cell_type": "code",
|
35 |
+
"execution_count": null,
|
36 |
+
"metadata": {},
|
37 |
+
"outputs": [],
|
38 |
+
"source": [
|
39 |
+
"im = PILImage.create('dog.jpg')\n",
|
40 |
+
"im.thumbnail((192,192))\n",
|
41 |
+
"im"
|
42 |
+
]
|
43 |
+
},
|
44 |
+
{
|
45 |
+
"cell_type": "code",
|
46 |
+
"execution_count": null,
|
47 |
+
"metadata": {},
|
48 |
+
"outputs": [],
|
49 |
+
"source": [
|
50 |
+
"#|export\n",
|
51 |
+
"\n",
|
52 |
+
"learn = load_learner(\"model.pkl\")"
|
53 |
+
]
|
54 |
+
},
|
55 |
+
{
|
56 |
+
"cell_type": "code",
|
57 |
+
"execution_count": null,
|
58 |
+
"metadata": {},
|
59 |
+
"outputs": [],
|
60 |
+
"source": [
|
61 |
+
"%time learn.predict(im)"
|
62 |
+
]
|
63 |
+
},
|
64 |
+
{
|
65 |
+
"cell_type": "code",
|
66 |
+
"execution_count": null,
|
67 |
+
"metadata": {},
|
68 |
+
"outputs": [],
|
69 |
+
"source": [
|
70 |
+
"#|export\n",
|
71 |
+
"categories = ('Dog', 'Cat')\n",
|
72 |
+
"\n",
|
73 |
+
"def classify_image(img):\n",
|
74 |
+
" pred,idx,probs = learn.predict(img)\n",
|
75 |
+
" return dict(zip(categories, map(float, probs)))"
|
76 |
+
]
|
77 |
+
},
|
78 |
+
{
|
79 |
+
"cell_type": "code",
|
80 |
+
"execution_count": null,
|
81 |
+
"metadata": {},
|
82 |
+
"outputs": [],
|
83 |
+
"source": [
|
84 |
+
"classify_image(im)"
|
85 |
+
]
|
86 |
+
},
|
87 |
+
{
|
88 |
+
"cell_type": "code",
|
89 |
+
"execution_count": null,
|
90 |
+
"metadata": {},
|
91 |
+
"outputs": [],
|
92 |
+
"source": [
|
93 |
+
"#|export\n",
|
94 |
+
"image = gr.inputs.Image(shape=(192,192))\n",
|
95 |
+
"label = gr.outputs.Label()\n",
|
96 |
+
"examples = ['dog.jpg', 'cat.jpg', 'dunno.jpg']\n",
|
97 |
+
"\n",
|
98 |
+
"intf = gr.Interface(fn=classify_image, inputs=image, outputs=label, examples=examples)\n",
|
99 |
+
"intf.launch(inline=False)"
|
100 |
+
]
|
101 |
+
}
|
102 |
+
],
|
103 |
+
"metadata": {
|
104 |
+
"kernelspec": {
|
105 |
+
"display_name": "myenv",
|
106 |
+
"language": "python",
|
107 |
+
"name": "python3"
|
108 |
+
},
|
109 |
+
"language_info": {
|
110 |
+
"codemirror_mode": {
|
111 |
+
"name": "ipython",
|
112 |
+
"version": 3
|
113 |
+
},
|
114 |
+
"file_extension": ".py",
|
115 |
+
"mimetype": "text/x-python",
|
116 |
+
"name": "python",
|
117 |
+
"nbconvert_exporter": "python",
|
118 |
+
"pygments_lexer": "ipython3",
|
119 |
+
"version": "3.10.12"
|
120 |
+
},
|
121 |
+
"orig_nbformat": 4
|
122 |
+
},
|
123 |
+
"nbformat": 4,
|
124 |
+
"nbformat_minor": 2
|
125 |
+
}
|
app.py
CHANGED
@@ -1,9 +1,49 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
|
4 |
-
|
5 |
-
|
6 |
|
7 |
|
8 |
-
iface = gr.Interface(fn=greet, inputs="text", outputs="text")
|
9 |
-
iface.launch()
|
|
|
1 |
+
|
2 |
+
# %% [markdown]
|
3 |
+
# Dogs vs Cats
|
4 |
+
|
5 |
+
# %%
|
6 |
+
#|default_exp app
|
7 |
+
!pip install gradio
|
8 |
+
|
9 |
+
# %%
|
10 |
+
#|export
|
11 |
+
from fastai.vision.all import *
|
12 |
import gradio as gr
|
13 |
|
14 |
+
def is_cat(x): return x[0].isupper()
|
15 |
+
|
16 |
+
# %%
|
17 |
+
im = PILImage.create('dog.jpg')
|
18 |
+
im.thumbnail((192,192))
|
19 |
+
im
|
20 |
+
|
21 |
+
# %%
|
22 |
+
#|export
|
23 |
+
|
24 |
+
learn = load_learner("model.pkl")
|
25 |
+
|
26 |
+
# %%
|
27 |
+
%time learn.predict(im)
|
28 |
+
|
29 |
+
# %%
|
30 |
+
#|export
|
31 |
+
categories = ('Dog', 'Cat')
|
32 |
+
|
33 |
+
def classify_image(img):
|
34 |
+
pred,idx,probs = learn.predict(img)
|
35 |
+
return dict(zip(categories, map(float, probs)))
|
36 |
+
|
37 |
+
# %%
|
38 |
+
classify_image(im)
|
39 |
+
|
40 |
+
# %%
|
41 |
+
#|export
|
42 |
+
image = gr.inputs.Image(shape=(192,192))
|
43 |
+
label = gr.outputs.Label()
|
44 |
+
examples = ['dog.jpg', 'cat.jpg', 'dunno.jpg']
|
45 |
|
46 |
+
intf = gr.Interface(fn=classify_image, inputs=image, outputs=label, examples=examples)
|
47 |
+
intf.launch(inline=False)
|
48 |
|
49 |
|
|
|
|
old_app.py
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
|
3 |
+
|
4 |
+
def greet(name):
|
5 |
+
return "Hello " + name + "!!"
|
6 |
+
|
7 |
+
|
8 |
+
iface = gr.Interface(fn=greet, inputs="text", outputs="text")
|
9 |
+
iface.launch()
|