move extract kps_sequence from video as util
Browse files- app.py +8 -7
- scripts/extract_kps_sequence_and_audio.py +0 -47
- sequence_utils.py +26 -0
app.py
CHANGED
@@ -3,6 +3,7 @@ import shutil
|
|
3 |
import subprocess
|
4 |
|
5 |
from inference import InferenceEngine
|
|
|
6 |
|
7 |
output_dir = "output"
|
8 |
temp_audio_path = "temp.mp3"
|
@@ -73,13 +74,13 @@ def run_demo(
|
|
73 |
progress((25,100), desc="Extract keypoints and audio...")
|
74 |
audio_path = video.replace(".mp4", ".mp3")
|
75 |
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
progress((50,100), desc="Keypoints and audio extracted successfully.")
|
84 |
#return "Keypoints and audio extracted successfully."
|
85 |
rem_progress = (75,100)
|
|
|
3 |
import subprocess
|
4 |
|
5 |
from inference import InferenceEngine
|
6 |
+
from sequence_utils import extract_kps_sequence_from_video
|
7 |
|
8 |
output_dir = "output"
|
9 |
temp_audio_path = "temp.mp3"
|
|
|
74 |
progress((25,100), desc="Extract keypoints and audio...")
|
75 |
audio_path = video.replace(".mp4", ".mp3")
|
76 |
|
77 |
+
extract_kps_sequence_from_video(
|
78 |
+
INFERENCE_ENGINE.app,
|
79 |
+
video,
|
80 |
+
audio_path,
|
81 |
+
kps_sequence_save_path
|
82 |
+
)
|
83 |
+
|
84 |
progress((50,100), desc="Keypoints and audio extracted successfully.")
|
85 |
#return "Keypoints and audio extracted successfully."
|
86 |
rem_progress = (75,100)
|
scripts/extract_kps_sequence_and_audio.py
DELETED
@@ -1,47 +0,0 @@
|
|
1 |
-
import argparse
|
2 |
-
|
3 |
-
import os
|
4 |
-
import cv2
|
5 |
-
import torch
|
6 |
-
from insightface.app import FaceAnalysis
|
7 |
-
from imageio_ffmpeg import get_ffmpeg_exe
|
8 |
-
|
9 |
-
def main(args):
|
10 |
-
app = FaceAnalysis(
|
11 |
-
providers=['CUDAExecutionProvider'],
|
12 |
-
provider_options=[{'device_id': args.gpu_id}],
|
13 |
-
root=args.insightface_model_path,
|
14 |
-
)
|
15 |
-
app.prepare(ctx_id=0, det_size=(args.height, args.width))
|
16 |
-
|
17 |
-
os.system(f'{get_ffmpeg_exe()} -i "{args.video_path}" -y -vn "{args.audio_save_path}"')
|
18 |
-
|
19 |
-
kps_sequence = []
|
20 |
-
video_capture = cv2.VideoCapture(args.video_path)
|
21 |
-
frame_idx = 0
|
22 |
-
while video_capture.isOpened():
|
23 |
-
ret, frame = video_capture.read()
|
24 |
-
if not ret:
|
25 |
-
break
|
26 |
-
faces = app.get(frame)
|
27 |
-
assert len(faces) == 1, f'There are {len(faces)} faces in the {frame_idx}-th frame. Only one face is supported.'
|
28 |
-
|
29 |
-
kps = faces[0].kps[:3]
|
30 |
-
kps_sequence.append(kps)
|
31 |
-
frame_idx += 1
|
32 |
-
torch.save(kps_sequence, args.kps_sequence_save_path)
|
33 |
-
|
34 |
-
|
35 |
-
if __name__ == '__main__':
|
36 |
-
parser = argparse.ArgumentParser()
|
37 |
-
parser.add_argument('--video_path', type=str, default='')
|
38 |
-
parser.add_argument('--kps_sequence_save_path', type=str, default='')
|
39 |
-
parser.add_argument('--audio_save_path', type=str, default='')
|
40 |
-
parser.add_argument('--device', type=str, default='cuda')
|
41 |
-
parser.add_argument('--gpu_id', type=int, default=0)
|
42 |
-
parser.add_argument('--insightface_model_path', type=str, default='./model_ckpts/insightface_models/')
|
43 |
-
parser.add_argument('--height', type=int, default=512)
|
44 |
-
parser.add_argument('--width', type=int, default=512)
|
45 |
-
args = parser.parse_args()
|
46 |
-
|
47 |
-
main(args)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
sequence_utils.py
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import cv2
|
3 |
+
import torch
|
4 |
+
from imageio_ffmpeg import get_ffmpeg_exe
|
5 |
+
|
6 |
+
def extract_kps_sequence_from_video(
|
7 |
+
face_analysis_app,
|
8 |
+
video_path, audio_save_path,
|
9 |
+
kps_sequence_save_path):
|
10 |
+
os.system(f'{get_ffmpeg_exe()} -i "{video_path}" -y -vn "{audio_save_path}"')
|
11 |
+
|
12 |
+
kps_sequence = []
|
13 |
+
video_capture = cv2.VideoCapture(video_path)
|
14 |
+
frame_idx = 0
|
15 |
+
while video_capture.isOpened():
|
16 |
+
ret, frame = video_capture.read()
|
17 |
+
if not ret:
|
18 |
+
break
|
19 |
+
faces = face_analysis_app.get(frame)
|
20 |
+
assert len(faces) == 1, f'There are {len(faces)} faces in the {frame_idx}-th frame. Only one face is supported.'
|
21 |
+
|
22 |
+
kps = faces[0].kps[:3]
|
23 |
+
kps_sequence.append(kps)
|
24 |
+
frame_idx += 1
|
25 |
+
torch.save(kps_sequence, kps_sequence_save_path)
|
26 |
+
|