|
from typing import Tuple |
|
|
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
from diffusers.models.modeling_utils import ModelMixin |
|
from .motion_module import zero_module |
|
from .resnet import InflatedConv3d |
|
|
|
|
|
class VKpsGuider(ModelMixin): |
|
def __init__( |
|
self, |
|
conditioning_embedding_channels: int, |
|
conditioning_channels: int = 3, |
|
block_out_channels: Tuple[int] = (16, 32, 64, 128), |
|
): |
|
super().__init__() |
|
self.conv_in = InflatedConv3d(conditioning_channels, block_out_channels[0], kernel_size=3, padding=1) |
|
|
|
self.blocks = nn.ModuleList([]) |
|
|
|
for i in range(len(block_out_channels) - 1): |
|
channel_in = block_out_channels[i] |
|
channel_out = block_out_channels[i + 1] |
|
self.blocks.append(InflatedConv3d(channel_in, channel_in, kernel_size=3, padding=1)) |
|
self.blocks.append(InflatedConv3d(channel_in, channel_out, kernel_size=3, padding=1, stride=2)) |
|
|
|
self.conv_out = zero_module(InflatedConv3d( |
|
block_out_channels[-1], |
|
conditioning_embedding_channels, |
|
kernel_size=3, |
|
padding=1, |
|
)) |
|
|
|
def forward(self, conditioning): |
|
embedding = self.conv_in(conditioning) |
|
embedding = F.silu(embedding) |
|
|
|
for block in self.blocks: |
|
embedding = block(embedding) |
|
embedding = F.silu(embedding) |
|
|
|
embedding = self.conv_out(embedding) |
|
|
|
return embedding |
|
|