|
|
|
|
|
from typing import Any, Dict, Optional |
|
|
|
import torch |
|
from diffusers.models.attention import AdaLayerNorm, AdaLayerNormZero, Attention, FeedForward, GatedSelfAttentionDense |
|
from diffusers.models.embeddings import SinusoidalPositionalEmbedding |
|
from einops import rearrange |
|
from torch import nn |
|
|
|
|
|
class BasicTransformerBlock(nn.Module): |
|
r""" |
|
A basic Transformer block. |
|
|
|
Parameters: |
|
dim (`int`): The number of channels in the input and output. |
|
num_attention_heads (`int`): The number of heads to use for multi-head attention. |
|
attention_head_dim (`int`): The number of channels in each head. |
|
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use. |
|
cross_attention_dim (`int`, *optional*): The size of the encoder_hidden_states vector for cross attention. |
|
activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward. |
|
num_embeds_ada_norm (: |
|
obj: `int`, *optional*): The number of diffusion steps used during training. See `Transformer2DModel`. |
|
attention_bias (: |
|
obj: `bool`, *optional*, defaults to `False`): Configure if the attentions should contain a bias parameter. |
|
only_cross_attention (`bool`, *optional*): |
|
Whether to use only cross-attention layers. In this case two cross attention layers are used. |
|
double_self_attention (`bool`, *optional*): |
|
Whether to use two self-attention layers. In this case no cross attention layers are used. |
|
upcast_attention (`bool`, *optional*): |
|
Whether to upcast the attention computation to float32. This is useful for mixed precision training. |
|
norm_elementwise_affine (`bool`, *optional*, defaults to `True`): |
|
Whether to use learnable elementwise affine parameters for normalization. |
|
norm_type (`str`, *optional*, defaults to `"layer_norm"`): |
|
The normalization layer to use. Can be `"layer_norm"`, `"ada_norm"` or `"ada_norm_zero"`. |
|
final_dropout (`bool` *optional*, defaults to False): |
|
Whether to apply a final dropout after the last feed-forward layer. |
|
attention_type (`str`, *optional*, defaults to `"default"`): |
|
The type of attention to use. Can be `"default"` or `"gated"` or `"gated-text-image"`. |
|
positional_embeddings (`str`, *optional*, defaults to `None`): |
|
The type of positional embeddings to apply to. |
|
num_positional_embeddings (`int`, *optional*, defaults to `None`): |
|
The maximum number of positional embeddings to apply. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
dim: int, |
|
num_attention_heads: int, |
|
attention_head_dim: int, |
|
dropout=0.0, |
|
cross_attention_dim: Optional[int] = None, |
|
activation_fn: str = "geglu", |
|
num_embeds_ada_norm: Optional[int] = None, |
|
attention_bias: bool = False, |
|
only_cross_attention: bool = False, |
|
double_self_attention: bool = False, |
|
upcast_attention: bool = False, |
|
norm_elementwise_affine: bool = True, |
|
norm_type: str = "layer_norm", |
|
norm_eps: float = 1e-5, |
|
final_dropout: bool = False, |
|
attention_type: str = "default", |
|
positional_embeddings: Optional[str] = None, |
|
num_positional_embeddings: Optional[int] = None, |
|
): |
|
super().__init__() |
|
self.only_cross_attention = only_cross_attention |
|
|
|
self.use_ada_layer_norm_zero = ( |
|
num_embeds_ada_norm is not None |
|
) and norm_type == "ada_norm_zero" |
|
self.use_ada_layer_norm = ( |
|
num_embeds_ada_norm is not None |
|
) and norm_type == "ada_norm" |
|
self.use_ada_layer_norm_single = norm_type == "ada_norm_single" |
|
self.use_layer_norm = norm_type == "layer_norm" |
|
|
|
if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None: |
|
raise ValueError( |
|
f"`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to" |
|
f" define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}." |
|
) |
|
|
|
if positional_embeddings and (num_positional_embeddings is None): |
|
raise ValueError( |
|
"If `positional_embedding` type is defined, `num_positition_embeddings` must also be defined." |
|
) |
|
|
|
if positional_embeddings == "sinusoidal": |
|
self.pos_embed = SinusoidalPositionalEmbedding( |
|
dim, max_seq_length=num_positional_embeddings |
|
) |
|
else: |
|
self.pos_embed = None |
|
|
|
|
|
|
|
if self.use_ada_layer_norm: |
|
self.norm1 = AdaLayerNorm(dim, num_embeds_ada_norm) |
|
elif self.use_ada_layer_norm_zero: |
|
self.norm1 = AdaLayerNormZero(dim, num_embeds_ada_norm) |
|
else: |
|
self.norm1 = nn.LayerNorm( |
|
dim, elementwise_affine=norm_elementwise_affine, eps=norm_eps |
|
) |
|
|
|
self.attn1 = Attention( |
|
query_dim=dim, |
|
heads=num_attention_heads, |
|
dim_head=attention_head_dim, |
|
dropout=dropout, |
|
bias=attention_bias, |
|
cross_attention_dim=cross_attention_dim if only_cross_attention else None, |
|
upcast_attention=upcast_attention, |
|
) |
|
|
|
|
|
if cross_attention_dim is not None or double_self_attention: |
|
|
|
|
|
|
|
self.norm2 = ( |
|
AdaLayerNorm(dim, num_embeds_ada_norm) |
|
if self.use_ada_layer_norm |
|
else nn.LayerNorm( |
|
dim, elementwise_affine=norm_elementwise_affine, eps=norm_eps |
|
) |
|
) |
|
self.attn2 = Attention( |
|
query_dim=dim, |
|
cross_attention_dim=cross_attention_dim |
|
if not double_self_attention |
|
else None, |
|
heads=num_attention_heads, |
|
dim_head=attention_head_dim, |
|
dropout=dropout, |
|
bias=attention_bias, |
|
upcast_attention=upcast_attention, |
|
) |
|
else: |
|
self.norm2 = None |
|
self.attn2 = None |
|
|
|
|
|
if not self.use_ada_layer_norm_single: |
|
self.norm3 = nn.LayerNorm( |
|
dim, elementwise_affine=norm_elementwise_affine, eps=norm_eps |
|
) |
|
|
|
self.ff = FeedForward( |
|
dim, |
|
dropout=dropout, |
|
activation_fn=activation_fn, |
|
final_dropout=final_dropout, |
|
) |
|
|
|
|
|
if attention_type == "gated" or attention_type == "gated-text-image": |
|
self.fuser = GatedSelfAttentionDense( |
|
dim, cross_attention_dim, num_attention_heads, attention_head_dim |
|
) |
|
|
|
|
|
if self.use_ada_layer_norm_single: |
|
self.scale_shift_table = nn.Parameter(torch.randn(6, dim) / dim**0.5) |
|
|
|
|
|
self._chunk_size = None |
|
self._chunk_dim = 0 |
|
|
|
def set_chunk_feed_forward(self, chunk_size: Optional[int], dim: int = 0): |
|
|
|
self._chunk_size = chunk_size |
|
self._chunk_dim = dim |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.FloatTensor, |
|
attention_mask: Optional[torch.FloatTensor] = None, |
|
encoder_hidden_states: Optional[torch.FloatTensor] = None, |
|
encoder_attention_mask: Optional[torch.FloatTensor] = None, |
|
timestep: Optional[torch.LongTensor] = None, |
|
cross_attention_kwargs: Dict[str, Any] = None, |
|
class_labels: Optional[torch.LongTensor] = None, |
|
) -> torch.FloatTensor: |
|
|
|
|
|
batch_size = hidden_states.shape[0] |
|
|
|
if self.use_ada_layer_norm: |
|
norm_hidden_states = self.norm1(hidden_states, timestep) |
|
elif self.use_ada_layer_norm_zero: |
|
norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1( |
|
hidden_states, timestep, class_labels, hidden_dtype=hidden_states.dtype |
|
) |
|
elif self.use_layer_norm: |
|
norm_hidden_states = self.norm1(hidden_states) |
|
elif self.use_ada_layer_norm_single: |
|
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = ( |
|
self.scale_shift_table[None] + timestep.reshape(batch_size, 6, -1) |
|
).chunk(6, dim=1) |
|
norm_hidden_states = self.norm1(hidden_states) |
|
norm_hidden_states = norm_hidden_states * (1 + scale_msa) + shift_msa |
|
norm_hidden_states = norm_hidden_states.squeeze(1) |
|
else: |
|
raise ValueError("Incorrect norm used") |
|
|
|
if self.pos_embed is not None: |
|
norm_hidden_states = self.pos_embed(norm_hidden_states) |
|
|
|
|
|
lora_scale = ( |
|
cross_attention_kwargs.get("scale", 1.0) |
|
if cross_attention_kwargs is not None |
|
else 1.0 |
|
) |
|
|
|
|
|
cross_attention_kwargs = ( |
|
cross_attention_kwargs.copy() if cross_attention_kwargs is not None else {} |
|
) |
|
gligen_kwargs = cross_attention_kwargs.pop("gligen", None) |
|
|
|
attn_output = self.attn1( |
|
norm_hidden_states, |
|
encoder_hidden_states=encoder_hidden_states |
|
if self.only_cross_attention |
|
else None, |
|
attention_mask=attention_mask, |
|
**cross_attention_kwargs, |
|
) |
|
if self.use_ada_layer_norm_zero: |
|
attn_output = gate_msa.unsqueeze(1) * attn_output |
|
elif self.use_ada_layer_norm_single: |
|
attn_output = gate_msa * attn_output |
|
|
|
hidden_states = attn_output + hidden_states |
|
if hidden_states.ndim == 4: |
|
hidden_states = hidden_states.squeeze(1) |
|
|
|
|
|
if gligen_kwargs is not None: |
|
hidden_states = self.fuser(hidden_states, gligen_kwargs["objs"]) |
|
|
|
|
|
if self.attn2 is not None: |
|
if self.use_ada_layer_norm: |
|
norm_hidden_states = self.norm2(hidden_states, timestep) |
|
elif self.use_ada_layer_norm_zero or self.use_layer_norm: |
|
norm_hidden_states = self.norm2(hidden_states) |
|
elif self.use_ada_layer_norm_single: |
|
|
|
|
|
norm_hidden_states = hidden_states |
|
else: |
|
raise ValueError("Incorrect norm") |
|
|
|
if self.pos_embed is not None and self.use_ada_layer_norm_single is False: |
|
norm_hidden_states = self.pos_embed(norm_hidden_states) |
|
|
|
attn_output = self.attn2( |
|
norm_hidden_states, |
|
encoder_hidden_states=encoder_hidden_states, |
|
attention_mask=encoder_attention_mask, |
|
**cross_attention_kwargs, |
|
) |
|
hidden_states = attn_output + hidden_states |
|
|
|
|
|
if not self.use_ada_layer_norm_single: |
|
norm_hidden_states = self.norm3(hidden_states) |
|
|
|
if self.use_ada_layer_norm_zero: |
|
norm_hidden_states = ( |
|
norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None] |
|
) |
|
|
|
if self.use_ada_layer_norm_single: |
|
norm_hidden_states = self.norm2(hidden_states) |
|
norm_hidden_states = norm_hidden_states * (1 + scale_mlp) + shift_mlp |
|
|
|
ff_output = self.ff(norm_hidden_states, scale=lora_scale) |
|
|
|
if self.use_ada_layer_norm_zero: |
|
ff_output = gate_mlp.unsqueeze(1) * ff_output |
|
elif self.use_ada_layer_norm_single: |
|
ff_output = gate_mlp * ff_output |
|
|
|
hidden_states = ff_output + hidden_states |
|
if hidden_states.ndim == 4: |
|
hidden_states = hidden_states.squeeze(1) |
|
|
|
return hidden_states |
|
|
|
|
|
class TemporalBasicTransformerBlock(nn.Module): |
|
def __init__( |
|
self, |
|
dim: int, |
|
num_attention_heads: int, |
|
attention_head_dim: int, |
|
dropout=0.0, |
|
cross_attention_dim: Optional[int] = None, |
|
activation_fn: str = "geglu", |
|
num_embeds_ada_norm: Optional[int] = None, |
|
attention_bias: bool = False, |
|
only_cross_attention: bool = False, |
|
upcast_attention: bool = False, |
|
unet_use_cross_frame_attention=None, |
|
unet_use_temporal_attention=None, |
|
): |
|
super().__init__() |
|
self.only_cross_attention = only_cross_attention |
|
self.use_ada_layer_norm = num_embeds_ada_norm is not None |
|
self.unet_use_cross_frame_attention = unet_use_cross_frame_attention |
|
self.unet_use_temporal_attention = unet_use_temporal_attention |
|
|
|
|
|
self.attn1 = Attention( |
|
query_dim=dim, |
|
heads=num_attention_heads, |
|
dim_head=attention_head_dim, |
|
dropout=dropout, |
|
bias=attention_bias, |
|
upcast_attention=upcast_attention, |
|
) |
|
self.norm1 = ( |
|
AdaLayerNorm(dim, num_embeds_ada_norm) |
|
if self.use_ada_layer_norm |
|
else nn.LayerNorm(dim) |
|
) |
|
|
|
|
|
self.attn1_5 = Attention( |
|
query_dim=dim, |
|
heads=num_attention_heads, |
|
dim_head=attention_head_dim, |
|
dropout=dropout, |
|
bias=attention_bias, |
|
upcast_attention=upcast_attention, |
|
) |
|
self.norm1_5 = ( |
|
AdaLayerNorm(dim, num_embeds_ada_norm) |
|
if self.use_ada_layer_norm |
|
else nn.LayerNorm(dim) |
|
) |
|
|
|
|
|
if cross_attention_dim is not None: |
|
self.attn2 = Attention( |
|
query_dim=dim, |
|
cross_attention_dim=cross_attention_dim, |
|
heads=num_attention_heads, |
|
dim_head=attention_head_dim, |
|
dropout=dropout, |
|
bias=attention_bias, |
|
upcast_attention=upcast_attention, |
|
) |
|
else: |
|
self.attn2 = None |
|
|
|
if cross_attention_dim is not None: |
|
self.norm2 = ( |
|
AdaLayerNorm(dim, num_embeds_ada_norm) |
|
if self.use_ada_layer_norm |
|
else nn.LayerNorm(dim) |
|
) |
|
else: |
|
self.norm2 = None |
|
|
|
|
|
self.ff = FeedForward(dim, dropout=dropout, activation_fn=activation_fn) |
|
self.norm3 = nn.LayerNorm(dim) |
|
self.use_ada_layer_norm_zero = False |
|
|
|
|
|
assert unet_use_temporal_attention is not None |
|
if unet_use_temporal_attention: |
|
self.attn_temp = Attention( |
|
query_dim=dim, |
|
heads=num_attention_heads, |
|
dim_head=attention_head_dim, |
|
dropout=dropout, |
|
bias=attention_bias, |
|
upcast_attention=upcast_attention, |
|
) |
|
nn.init.zeros_(self.attn_temp.to_out[0].weight.data) |
|
self.norm_temp = ( |
|
AdaLayerNorm(dim, num_embeds_ada_norm) |
|
if self.use_ada_layer_norm |
|
else nn.LayerNorm(dim) |
|
) |
|
|
|
def forward( |
|
self, |
|
hidden_states, |
|
encoder_hidden_states=None, |
|
timestep=None, |
|
attention_mask=None, |
|
video_length=None, |
|
): |
|
norm_hidden_states = ( |
|
self.norm1(hidden_states, timestep) |
|
if self.use_ada_layer_norm |
|
else self.norm1(hidden_states) |
|
) |
|
|
|
if self.unet_use_cross_frame_attention: |
|
hidden_states = ( |
|
self.attn1( |
|
norm_hidden_states, |
|
attention_mask=attention_mask, |
|
video_length=video_length, |
|
) |
|
+ hidden_states |
|
) |
|
else: |
|
hidden_states = ( |
|
self.attn1(norm_hidden_states, attention_mask=attention_mask) |
|
+ hidden_states |
|
) |
|
|
|
norm_hidden_states = ( |
|
self.norm1_5(hidden_states, timestep) |
|
if self.use_ada_layer_norm |
|
else self.norm1_5(hidden_states) |
|
) |
|
|
|
if self.unet_use_cross_frame_attention: |
|
hidden_states = ( |
|
self.attn1_5( |
|
norm_hidden_states, |
|
attention_mask=attention_mask, |
|
video_length=video_length, |
|
) |
|
+ hidden_states |
|
) |
|
else: |
|
hidden_states = ( |
|
self.attn1_5(norm_hidden_states, attention_mask=attention_mask) |
|
+ hidden_states |
|
) |
|
|
|
if self.attn2 is not None: |
|
|
|
norm_hidden_states = ( |
|
self.norm2(hidden_states, timestep) |
|
if self.use_ada_layer_norm |
|
else self.norm2(hidden_states) |
|
) |
|
hidden_states = ( |
|
self.attn2( |
|
norm_hidden_states, |
|
encoder_hidden_states=encoder_hidden_states, |
|
attention_mask=attention_mask, |
|
) |
|
+ hidden_states |
|
) |
|
|
|
|
|
hidden_states = self.ff(self.norm3(hidden_states)) + hidden_states |
|
|
|
|
|
if self.unet_use_temporal_attention: |
|
d = hidden_states.shape[1] |
|
hidden_states = rearrange( |
|
hidden_states, "(b f) d c -> (b d) f c", f=video_length |
|
) |
|
norm_hidden_states = ( |
|
self.norm_temp(hidden_states, timestep) |
|
if self.use_ada_layer_norm |
|
else self.norm_temp(hidden_states) |
|
) |
|
hidden_states = self.attn_temp(norm_hidden_states) + hidden_states |
|
hidden_states = rearrange(hidden_states, "(b d) f c -> (b f) d c", d=d) |
|
|
|
return hidden_states |
|
|
|
class TemporalBasicTransformerBlockOld(nn.Module): |
|
def __init__( |
|
self, |
|
dim: int, |
|
num_attention_heads: int, |
|
attention_head_dim: int, |
|
dropout=0.0, |
|
cross_attention_dim: Optional[int] = None, |
|
activation_fn: str = "geglu", |
|
num_embeds_ada_norm: Optional[int] = None, |
|
attention_bias: bool = False, |
|
only_cross_attention: bool = False, |
|
upcast_attention: bool = False, |
|
unet_use_cross_frame_attention=None, |
|
unet_use_temporal_attention=None, |
|
): |
|
super().__init__() |
|
self.only_cross_attention = only_cross_attention |
|
self.use_ada_layer_norm = num_embeds_ada_norm is not None |
|
self.unet_use_cross_frame_attention = unet_use_cross_frame_attention |
|
self.unet_use_temporal_attention = unet_use_temporal_attention |
|
|
|
|
|
self.attn1 = Attention( |
|
query_dim=dim, |
|
heads=num_attention_heads, |
|
dim_head=attention_head_dim, |
|
dropout=dropout, |
|
bias=attention_bias, |
|
upcast_attention=upcast_attention, |
|
) |
|
self.norm1 = ( |
|
AdaLayerNorm(dim, num_embeds_ada_norm) |
|
if self.use_ada_layer_norm |
|
else nn.LayerNorm(dim) |
|
) |
|
|
|
|
|
if cross_attention_dim is not None: |
|
self.attn2 = Attention( |
|
query_dim=dim, |
|
cross_attention_dim=cross_attention_dim, |
|
heads=num_attention_heads, |
|
dim_head=attention_head_dim, |
|
dropout=dropout, |
|
bias=attention_bias, |
|
upcast_attention=upcast_attention, |
|
) |
|
else: |
|
self.attn2 = None |
|
|
|
if cross_attention_dim is not None: |
|
self.norm2 = ( |
|
AdaLayerNorm(dim, num_embeds_ada_norm) |
|
if self.use_ada_layer_norm |
|
else nn.LayerNorm(dim) |
|
) |
|
else: |
|
self.norm2 = None |
|
|
|
|
|
self.ff = FeedForward(dim, dropout=dropout, activation_fn=activation_fn) |
|
self.norm3 = nn.LayerNorm(dim) |
|
self.use_ada_layer_norm_zero = False |
|
|
|
|
|
assert unet_use_temporal_attention is not None |
|
if unet_use_temporal_attention: |
|
self.attn_temp = Attention( |
|
query_dim=dim, |
|
heads=num_attention_heads, |
|
dim_head=attention_head_dim, |
|
dropout=dropout, |
|
bias=attention_bias, |
|
upcast_attention=upcast_attention, |
|
) |
|
nn.init.zeros_(self.attn_temp.to_out[0].weight.data) |
|
self.norm_temp = ( |
|
AdaLayerNorm(dim, num_embeds_ada_norm) |
|
if self.use_ada_layer_norm |
|
else nn.LayerNorm(dim) |
|
) |
|
|
|
def forward( |
|
self, |
|
hidden_states, |
|
encoder_hidden_states=None, |
|
timestep=None, |
|
attention_mask=None, |
|
video_length=None, |
|
): |
|
norm_hidden_states = ( |
|
self.norm1(hidden_states, timestep) |
|
if self.use_ada_layer_norm |
|
else self.norm1(hidden_states) |
|
) |
|
|
|
if self.unet_use_cross_frame_attention: |
|
hidden_states = ( |
|
self.attn1( |
|
norm_hidden_states, |
|
attention_mask=attention_mask, |
|
video_length=video_length, |
|
) |
|
+ hidden_states |
|
) |
|
else: |
|
hidden_states = ( |
|
self.attn1(norm_hidden_states, attention_mask=attention_mask) |
|
+ hidden_states |
|
) |
|
|
|
if self.attn2 is not None: |
|
|
|
norm_hidden_states = ( |
|
self.norm2(hidden_states, timestep) |
|
if self.use_ada_layer_norm |
|
else self.norm2(hidden_states) |
|
) |
|
hidden_states = ( |
|
self.attn2( |
|
norm_hidden_states, |
|
encoder_hidden_states=encoder_hidden_states, |
|
attention_mask=attention_mask, |
|
) |
|
+ hidden_states |
|
) |
|
|
|
|
|
hidden_states = self.ff(self.norm3(hidden_states)) + hidden_states |
|
|
|
|
|
if self.unet_use_temporal_attention: |
|
d = hidden_states.shape[1] |
|
hidden_states = rearrange( |
|
hidden_states, "(b f) d c -> (b d) f c", f=video_length |
|
) |
|
norm_hidden_states = ( |
|
self.norm_temp(hidden_states, timestep) |
|
if self.use_ada_layer_norm |
|
else self.norm_temp(hidden_states) |
|
) |
|
hidden_states = self.attn_temp(norm_hidden_states) + hidden_states |
|
hidden_states = rearrange(hidden_states, "(b d) f c -> (b f) d c", d=d) |
|
|
|
return hidden_states |