V-Express / inference.py
faraday's picture
just cuda
86716b3
raw
history blame
12.2 kB
import os
import cv2
import numpy as np
import torch
import torchaudio.functional
import torchvision.io
from PIL import Image
from diffusers import AutoencoderKL, DDIMScheduler
from diffusers.utils.import_utils import is_xformers_available
from diffusers.utils.torch_utils import randn_tensor
from insightface.app import FaceAnalysis
from omegaconf import OmegaConf
from transformers import CLIPVisionModelWithProjection, Wav2Vec2Model, Wav2Vec2Processor
from modules import UNet2DConditionModel, UNet3DConditionModel, VKpsGuider, AudioProjection
from pipelines import VExpressPipeline
from pipelines.utils import draw_kps_image, save_video
from pipelines.utils import retarget_kps
def load_reference_net(unet_config_path, reference_net_path, dtype, device):
reference_net = UNet2DConditionModel.from_config(unet_config_path).to(dtype=dtype, device=device)
reference_net.load_state_dict(torch.load(reference_net_path, map_location="cpu"), strict=False)
print(f'Loaded weights of Reference Net from {reference_net_path}.')
return reference_net
def load_denoising_unet(unet_config_path, denoising_unet_path, motion_module_path, dtype, device):
inference_config_path = './inference_v2.yaml'
inference_config = OmegaConf.load(inference_config_path)
denoising_unet = UNet3DConditionModel.from_config_2d(
unet_config_path,
unet_additional_kwargs=inference_config.unet_additional_kwargs,
).to(dtype=dtype, device=device)
denoising_unet.load_state_dict(torch.load(denoising_unet_path, map_location="cpu"), strict=False)
print(f'Loaded weights of Denoising U-Net from {denoising_unet_path}.')
denoising_unet.load_state_dict(torch.load(motion_module_path, map_location="cpu"), strict=False)
print(f'Loaded weights of Denoising U-Net Motion Module from {motion_module_path}.')
return denoising_unet
def load_v_kps_guider(v_kps_guider_path, dtype, device):
v_kps_guider = VKpsGuider(320, block_out_channels=(16, 32, 96, 256)).to(dtype=dtype, device=device)
v_kps_guider.load_state_dict(torch.load(v_kps_guider_path, map_location="cpu"))
print(f'Loaded weights of V-Kps Guider from {v_kps_guider_path}.')
return v_kps_guider
def load_audio_projection(
audio_projection_path,
dtype,
device,
inp_dim: int,
mid_dim: int,
out_dim: int,
inp_seq_len: int,
out_seq_len: int,
):
audio_projection = AudioProjection(
dim=mid_dim,
depth=4,
dim_head=64,
heads=12,
num_queries=out_seq_len,
embedding_dim=inp_dim,
output_dim=out_dim,
ff_mult=4,
max_seq_len=inp_seq_len,
).to(dtype=dtype, device=device)
audio_projection.load_state_dict(torch.load(audio_projection_path, map_location='cpu'))
print(f'Loaded weights of Audio Projection from {audio_projection_path}.')
return audio_projection
def get_scheduler():
inference_config_path = './inference_v2.yaml'
inference_config = OmegaConf.load(inference_config_path)
scheduler_kwargs = OmegaConf.to_container(inference_config.noise_scheduler_kwargs)
scheduler = DDIMScheduler(**scheduler_kwargs)
return scheduler
class InferenceEngine(object):
def __init__(self, args):
self.init_params(args)
self.load_models()
self.set_generator()
self.set_vexpress_pipeline()
self.set_face_analysis_app()
def init_params(self, args):
for key, value in args.items():
setattr(self, key, value)
print("Image width: ", self.image_width)
print("Image height: ", self.image_height)
def load_models(self):
self.device = torch.device(f'cuda:{self.gpu_id}')
self.dtype = torch.float16 if self.dtype == 'fp16' else torch.float32
self.vae = AutoencoderKL.from_pretrained(self.vae_path).to(dtype=self.dtype, device=self.device)
print("VAE exists: ", self.vae)
self.audio_encoder = Wav2Vec2Model.from_pretrained(self.audio_encoder_path).to(dtype=self.dtype, device=self.device)
self.audio_processor = Wav2Vec2Processor.from_pretrained(self.audio_encoder_path)
self.scheduler = get_scheduler()
self.reference_net = load_reference_net(self.unet_config_path, self.reference_net_path, self.dtype, self.device)
self.denoising_unet = load_denoising_unet(self.unet_config_path, self.denoising_unet_path, self.motion_module_path, self.dtype, self.device)
self.v_kps_guider = load_v_kps_guider(self.v_kps_guider_path, self.dtype, self.device)
self.audio_projection = load_audio_projection(
self.audio_projection_path,
self.dtype,
self.device,
inp_dim=self.denoising_unet.config.cross_attention_dim,
mid_dim=self.denoising_unet.config.cross_attention_dim,
out_dim=self.denoising_unet.config.cross_attention_dim,
inp_seq_len=2 * (2 * self.num_pad_audio_frames + 1),
out_seq_len=2 * self.num_pad_audio_frames + 1,
)
if is_xformers_available():
self.reference_net.enable_xformers_memory_efficient_attention()
self.denoising_unet.enable_xformers_memory_efficient_attention()
else:
raise ValueError("xformers is not available. Make sure it is installed correctly")
def set_generator(self):
self.generator = torch.manual_seed(self.seed)
def set_vexpress_pipeline(self):
print("VAE exists (2): ", self.vae)
self.pipeline = VExpressPipeline(
vae=self.vae,
reference_net=self.reference_net,
denoising_unet=self.denoising_unet,
v_kps_guider=self.v_kps_guider,
audio_processor=self.audio_processor,
audio_encoder=self.audio_encoder,
audio_projection=self.audio_projection,
scheduler=self.scheduler,
).to(dtype=self.dtype, device=self.device)
def set_face_analysis_app(self):
self.app = FaceAnalysis(
providers=['CUDAExecutionProvider'],
provider_options=[{'device_id': self.gpu_id}],
root=self.insightface_model_path,
)
self.app.prepare(ctx_id=0, det_size=(self.image_height, self.image_width))
def get_reference_image_for_kps(self, reference_image_path):
reference_image = Image.open(reference_image_path).convert('RGB')
print("Image width ???", self.image_width)
reference_image = reference_image.resize((self.image_height, self.image_width))
reference_image_for_kps = cv2.imread(reference_image_path)
reference_image_for_kps = cv2.resize(reference_image_for_kps, (self.image_height, self.image_width))
reference_kps = self.app.get(reference_image_for_kps)[0].kps[:3]
return reference_image, reference_image_for_kps, reference_kps
def get_waveform_video_length(self, audio_path):
_, audio_waveform, meta_info = torchvision.io.read_video(audio_path, pts_unit='sec')
audio_sampling_rate = meta_info['audio_fps']
print(f'Length of audio is {audio_waveform.shape[1]} with the sampling rate of {audio_sampling_rate}.')
if audio_sampling_rate != self.standard_audio_sampling_rate:
audio_waveform = torchaudio.functional.resample(
audio_waveform,
orig_freq=audio_sampling_rate,
new_freq=self.standard_audio_sampling_rate,
)
audio_waveform = audio_waveform.mean(dim=0)
duration = audio_waveform.shape[0] / self.standard_audio_sampling_rate
video_length = int(duration * self.fps)
print(f'The corresponding video length is {video_length}.')
return audio_waveform, video_length
def get_kps_sequence(self, kps_path, reference_kps, video_length, retarget_strategy):
if kps_path != "":
assert os.path.exists(kps_path), f'{kps_path} does not exist'
kps_sequence = torch.tensor(torch.load(kps_path)) # [len, 3, 2]
print(f'The original length of kps sequence is {kps_sequence.shape[0]}.')
kps_sequence = torch.nn.functional.interpolate(kps_sequence.permute(1, 2, 0), size=video_length, mode='linear')
kps_sequence = kps_sequence.permute(2, 0, 1)
print(f'The interpolated length of kps sequence is {kps_sequence.shape[0]}.')
if retarget_strategy == 'fix_face':
kps_sequence = torch.tensor([reference_kps] * video_length)
elif retarget_strategy == 'no_retarget':
kps_sequence = kps_sequence
elif retarget_strategy == 'offset_retarget':
kps_sequence = retarget_kps(reference_kps, kps_sequence, only_offset=True)
elif retarget_strategy == 'naive_retarget':
kps_sequence = retarget_kps(reference_kps, kps_sequence, only_offset=False)
else:
raise ValueError(f'The retarget strategy {retarget_strategy} is not supported.')
return kps_sequence
def get_kps_images(self, kps_sequence, reference_image_for_kps, video_length):
kps_images = []
for i in range(video_length):
kps_image = np.zeros_like(reference_image_for_kps)
kps_image = draw_kps_image(kps_image, kps_sequence[i])
kps_images.append(Image.fromarray(kps_image))
return kps_images
def get_video_latents(self, reference_image, kps_images, audio_waveform, video_length, reference_attention_weight, audio_attention_weight):
vae_scale_factor = 8
latent_height = self.image_height // vae_scale_factor
latent_width = self.image_width // vae_scale_factor
latent_shape = (1, 4, video_length, latent_height, latent_width)
vae_latents = randn_tensor(latent_shape, generator=self.generator, device=self.device, dtype=self.dtype)
video_latents = self.pipeline(
vae_latents=vae_latents,
reference_image=reference_image,
kps_images=kps_images,
audio_waveform=audio_waveform,
width=self.image_width,
height=self.image_height,
video_length=video_length,
num_inference_steps=self.num_inference_steps,
guidance_scale=self.guidance_scale,
context_frames=self.context_frames,
context_stride=self.context_stride,
context_overlap=self.context_overlap,
reference_attention_weight=reference_attention_weight,
audio_attention_weight=audio_attention_weight,
num_pad_audio_frames=self.num_pad_audio_frames,
generator=self.generator,
).video_latents
return video_latents
def get_video_tensor(self, video_latents):
video_tensor = self.pipeline.decode_latents(video_latents)
if isinstance(video_tensor, np.ndarray):
video_tensor = torch.from_numpy(video_tensor)
return video_tensor
def save_video_tensor(self, video_tensor, audio_path, output_path):
save_video(video_tensor, audio_path, output_path, self.fps)
print(f'The generated video has been saved at {output_path}.')
def infer(
self,
reference_image_path, audio_path, kps_path,
output_path,
retarget_strategy,
reference_attention_weight, audio_attention_weight):
reference_image, reference_image_for_kps, reference_kps = self.get_reference_image_for_kps(reference_image_path)
audio_waveform, video_length = self.get_waveform_video_length(audio_path)
kps_sequence = self.get_kps_sequence(kps_path, reference_kps, video_length, retarget_strategy)
kps_images = self.get_kps_images(kps_sequence, reference_image_for_kps, video_length)
video_latents = self.get_video_latents(
reference_image, kps_images, audio_waveform,
video_length,
reference_attention_weight, audio_attention_weight)
video_tensor = self.get_video_tensor(video_latents)
self.save_video_tensor(video_tensor, audio_path, output_path)