File size: 4,706 Bytes
88590fc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
import math

import torch
import torch.nn as nn
from diffusers.models.modeling_utils import ModelMixin
from einops import rearrange
from einops.layers.torch import Rearrange


def reshape_tensor(x, heads):
    bs, length, width = x.shape
    # (bs, length, width) --> (bs, length, n_heads, dim_per_head)
    x = x.view(bs, length, heads, -1)
    # (bs, length, n_heads, dim_per_head) --> (bs, n_heads, length, dim_per_head)
    x = x.transpose(1, 2)
    # (bs, n_heads, length, dim_per_head) --> (bs*n_heads, length, dim_per_head)
    x = x.reshape(bs, heads, length, -1)
    return x


def masked_mean(t, *, dim, mask=None):
    if mask is None:
        return t.mean(dim=dim)

    denom = mask.sum(dim=dim, keepdim=True)
    mask = rearrange(mask, "b n -> b n 1")
    masked_t = t.masked_fill(~mask, 0.0)

    return masked_t.sum(dim=dim) / denom.clamp(min=1e-5)


class PerceiverAttention(nn.Module):
    def __init__(self, *, dim, dim_head=64, heads=8):
        super().__init__()
        self.scale = dim_head ** -0.5
        self.dim_head = dim_head
        self.heads = heads
        inner_dim = dim_head * heads

        self.norm1 = nn.LayerNorm(dim)
        self.norm2 = nn.LayerNorm(dim)

        self.to_q = nn.Linear(dim, inner_dim, bias=False)
        self.to_kv = nn.Linear(dim, inner_dim * 2, bias=False)
        self.to_out = nn.Linear(inner_dim, dim, bias=False)

    def forward(self, x, latents):
        """
        Args:
            x (torch.Tensor): image features
                shape (b, n1, D)
            latent (torch.Tensor): latent features
                shape (b, n2, D)
        """
        x = self.norm1(x)
        latents = self.norm2(latents)

        b, l, _ = latents.shape

        q = self.to_q(latents)
        kv_input = torch.cat((x, latents), dim=-2)
        k, v = self.to_kv(kv_input).chunk(2, dim=-1)

        q = reshape_tensor(q, self.heads)
        k = reshape_tensor(k, self.heads)
        v = reshape_tensor(v, self.heads)

        # attention
        scale = 1 / math.sqrt(math.sqrt(self.dim_head))
        weight = (q * scale) @ (k * scale).transpose(-2, -1)  # More stable with f16 than dividing afterwards
        weight = torch.softmax(weight.float(), dim=-1).type(weight.dtype)
        out = weight @ v

        out = out.permute(0, 2, 1, 3).reshape(b, l, -1)

        return self.to_out(out)


def FeedForward(dim, mult=4):
    inner_dim = int(dim * mult)
    return nn.Sequential(
        nn.LayerNorm(dim),
        nn.Linear(dim, inner_dim, bias=False),
        nn.GELU(),
        nn.Linear(inner_dim, dim, bias=False),
    )


class AudioProjection(ModelMixin):
    def __init__(
            self,
            dim=1024,
            depth=8,
            dim_head=64,
            heads=16,
            num_queries=8,
            embedding_dim=768,
            output_dim=1024,
            ff_mult=4,
            max_seq_len: int = 257,
            num_latents_mean_pooled: int = 0,
    ):
        super().__init__()

        self.pos_emb = nn.Embedding(max_seq_len, embedding_dim)
        self.latents = nn.Parameter(torch.randn(1, num_queries, dim) / dim ** 0.5)

        self.proj_in = nn.Linear(embedding_dim, dim)

        self.proj_out = nn.Linear(dim, output_dim)
        self.norm_out = nn.LayerNorm(output_dim)

        self.to_latents_from_mean_pooled_seq = (
            nn.Sequential(
                nn.LayerNorm(dim),
                nn.Linear(dim, dim * num_latents_mean_pooled),
                Rearrange("b (n d) -> b n d", n=num_latents_mean_pooled),
            )
            if num_latents_mean_pooled > 0
            else None
        )

        self.layers = nn.ModuleList([])
        for _ in range(depth):
            self.layers.append(nn.ModuleList([
                PerceiverAttention(dim=dim, dim_head=dim_head, heads=heads),
                FeedForward(dim=dim, mult=ff_mult),
            ]))

    def forward(self, x):
        if self.pos_emb is not None:
            n, device = x.shape[1], x.device
            pos_emb = self.pos_emb(torch.arange(n, device=device))
            x = x + pos_emb

        latents = self.latents.repeat(x.size(0), 1, 1)

        x = self.proj_in(x)

        if self.to_latents_from_mean_pooled_seq:
            meanpooled_seq = masked_mean(x, dim=1, mask=torch.ones(x.shape[:2], device=x.device, dtype=torch.bool))
            meanpooled_latents = self.to_latents_from_mean_pooled_seq(meanpooled_seq)
            latents = torch.cat((meanpooled_latents, latents), dim=-2)

        for attn, ff in self.layers:
            latents = attn(x, latents) + latents
            latents = ff(latents) + latents

        latents = self.proj_out(latents)
        return self.norm_out(latents)