File size: 12,488 Bytes
88590fc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 |
import spaces
import argparse
import os
import cv2
import numpy as np
import torch
import torchaudio.functional
import torchvision.io
from PIL import Image
from diffusers import AutoencoderKL, DDIMScheduler
from diffusers.utils.import_utils import is_xformers_available
from diffusers.utils.torch_utils import randn_tensor
from insightface.app import FaceAnalysis
from omegaconf import OmegaConf
from transformers import CLIPVisionModelWithProjection, Wav2Vec2Model, Wav2Vec2Processor
from modules import UNet2DConditionModel, UNet3DConditionModel, VKpsGuider, AudioProjection
from pipelines import VExpressPipeline
from pipelines.utils import draw_kps_image, save_video
from pipelines.utils import retarget_kps
@spaces.GPU
def load_reference_net(unet_config_path, reference_net_path, dtype, device):
reference_net = UNet2DConditionModel.from_config(unet_config_path).to(dtype=dtype, device=device)
reference_net.load_state_dict(torch.load(reference_net_path, map_location="cpu"), strict=False)
print(f'Loaded weights of Reference Net from {reference_net_path}.')
return reference_net
@spaces.GPU
def load_denoising_unet(unet_config_path, denoising_unet_path, motion_module_path, dtype, device):
inference_config_path = './inference_v2.yaml'
inference_config = OmegaConf.load(inference_config_path)
denoising_unet = UNet3DConditionModel.from_config_2d(
unet_config_path,
unet_additional_kwargs=inference_config.unet_additional_kwargs,
).to(dtype=dtype, device=device)
denoising_unet.load_state_dict(torch.load(denoising_unet_path, map_location="cpu"), strict=False)
print(f'Loaded weights of Denoising U-Net from {denoising_unet_path}.')
denoising_unet.load_state_dict(torch.load(motion_module_path, map_location="cpu"), strict=False)
print(f'Loaded weights of Denoising U-Net Motion Module from {motion_module_path}.')
return denoising_unet
@spaces.GPU
def load_v_kps_guider(v_kps_guider_path, dtype, device):
v_kps_guider = VKpsGuider(320, block_out_channels=(16, 32, 96, 256)).to(dtype=dtype, device=device)
v_kps_guider.load_state_dict(torch.load(v_kps_guider_path, map_location="cpu"))
print(f'Loaded weights of V-Kps Guider from {v_kps_guider_path}.')
return v_kps_guider
@spaces.GPU
def load_audio_projection(
audio_projection_path,
dtype,
device,
inp_dim: int,
mid_dim: int,
out_dim: int,
inp_seq_len: int,
out_seq_len: int,
):
audio_projection = AudioProjection(
dim=mid_dim,
depth=4,
dim_head=64,
heads=12,
num_queries=out_seq_len,
embedding_dim=inp_dim,
output_dim=out_dim,
ff_mult=4,
max_seq_len=inp_seq_len,
).to(dtype=dtype, device=device)
audio_projection.load_state_dict(torch.load(audio_projection_path, map_location='cpu'))
print(f'Loaded weights of Audio Projection from {audio_projection_path}.')
return audio_projection
@spaces.GPU
def get_scheduler():
inference_config_path = './inference_v2.yaml'
inference_config = OmegaConf.load(inference_config_path)
scheduler_kwargs = OmegaConf.to_container(inference_config.noise_scheduler_kwargs)
scheduler = DDIMScheduler(**scheduler_kwargs)
return scheduler
class InferenceEngine(object):
@spaces.GPU
def __init__(self, args):
self.init_params(args)
self.load_models()
self.set_generator()
self.set_vexpress_pipeline()
self.set_face_analysis_app()
@spaces.GPU
def init_params(self, args):
for key, value in args.items():
setattr(self, key, value)
print("Image width: ", self.image_width)
print("Image height: ", self.image_height)
@spaces.GPU
def load_models(self):
self.device = torch.device(f'cuda:{self.gpu_id}')
self.dtype = torch.float16 if self.dtype == 'fp16' else torch.float32
self.vae = AutoencoderKL.from_pretrained(self.vae_path).to(dtype=self.dtype, device=self.device)
print("VAE exists: ", self.vae)
self.audio_encoder = Wav2Vec2Model.from_pretrained(self.audio_encoder_path).to(dtype=self.dtype, device=self.device)
self.audio_processor = Wav2Vec2Processor.from_pretrained(self.audio_encoder_path)
self.scheduler = get_scheduler()
self.reference_net = load_reference_net(self.unet_config_path, self.reference_net_path, self.dtype, self.device)
self.denoising_unet = load_denoising_unet(self.unet_config_path, self.denoising_unet_path, self.motion_module_path, self.dtype, self.device)
self.v_kps_guider = load_v_kps_guider(self.v_kps_guider_path, self.dtype, self.device)
self.audio_projection = load_audio_projection(
self.audio_projection_path,
self.dtype,
self.device,
inp_dim=self.denoising_unet.config.cross_attention_dim,
mid_dim=self.denoising_unet.config.cross_attention_dim,
out_dim=self.denoising_unet.config.cross_attention_dim,
inp_seq_len=2 * (2 * self.num_pad_audio_frames + 1),
out_seq_len=2 * self.num_pad_audio_frames + 1,
)
if is_xformers_available():
self.reference_net.enable_xformers_memory_efficient_attention()
self.denoising_unet.enable_xformers_memory_efficient_attention()
else:
raise ValueError("xformers is not available. Make sure it is installed correctly")
@spaces.GPU
def set_generator(self):
self.generator = torch.manual_seed(self.seed)
@spaces.GPU
def set_vexpress_pipeline(self):
print("VAE exists (2): ", self.vae)
self.pipeline = VExpressPipeline(
vae=self.vae,
reference_net=self.reference_net,
denoising_unet=self.denoising_unet,
v_kps_guider=self.v_kps_guider,
audio_processor=self.audio_processor,
audio_encoder=self.audio_encoder,
audio_projection=self.audio_projection,
scheduler=self.scheduler,
).to(dtype=self.dtype, device=self.device)
@spaces.GPU
def set_face_analysis_app(self):
self.app = FaceAnalysis(
providers=['CUDAExecutionProvider'],
provider_options=[{'device_id': self.gpu_id}],
root=self.insightface_model_path,
)
self.app.prepare(ctx_id=0, det_size=(self.image_height, self.image_width))
@spaces.GPU
def get_reference_image_for_kps(self, reference_image_path):
reference_image = Image.open(reference_image_path).convert('RGB')
print("Image width ???", self.image_width)
reference_image = reference_image.resize((self.image_height, self.image_width))
reference_image_for_kps = cv2.imread(reference_image_path)
reference_image_for_kps = cv2.resize(reference_image_for_kps, (self.image_height, self.image_width))
reference_kps = self.app.get(reference_image_for_kps)[0].kps[:3]
return reference_image, reference_image_for_kps, reference_kps
@spaces.GPU
def get_waveform_video_length(self, audio_path):
_, audio_waveform, meta_info = torchvision.io.read_video(audio_path, pts_unit='sec')
audio_sampling_rate = meta_info['audio_fps']
print(f'Length of audio is {audio_waveform.shape[1]} with the sampling rate of {audio_sampling_rate}.')
if audio_sampling_rate != self.standard_audio_sampling_rate:
audio_waveform = torchaudio.functional.resample(
audio_waveform,
orig_freq=audio_sampling_rate,
new_freq=self.standard_audio_sampling_rate,
)
audio_waveform = audio_waveform.mean(dim=0)
duration = audio_waveform.shape[0] / self.standard_audio_sampling_rate
video_length = int(duration * self.fps)
print(f'The corresponding video length is {video_length}.')
return audio_waveform, video_length
@spaces.GPU
def get_kps_sequence(self, kps_path, reference_kps, video_length, retarget_strategy):
if kps_path != "":
assert os.path.exists(kps_path), f'{kps_path} does not exist'
kps_sequence = torch.tensor(torch.load(kps_path)) # [len, 3, 2]
print(f'The original length of kps sequence is {kps_sequence.shape[0]}.')
kps_sequence = torch.nn.functional.interpolate(kps_sequence.permute(1, 2, 0), size=video_length, mode='linear')
kps_sequence = kps_sequence.permute(2, 0, 1)
print(f'The interpolated length of kps sequence is {kps_sequence.shape[0]}.')
if retarget_strategy == 'fix_face':
kps_sequence = torch.tensor([reference_kps] * video_length)
elif retarget_strategy == 'no_retarget':
kps_sequence = kps_sequence
elif retarget_strategy == 'offset_retarget':
kps_sequence = retarget_kps(reference_kps, kps_sequence, only_offset=True)
elif retarget_strategy == 'naive_retarget':
kps_sequence = retarget_kps(reference_kps, kps_sequence, only_offset=False)
else:
raise ValueError(f'The retarget strategy {retarget_strategy} is not supported.')
return kps_sequence
@spaces.GPU
def get_kps_images(self, kps_sequence, reference_image_for_kps, video_length):
kps_images = []
for i in range(video_length):
kps_image = np.zeros_like(reference_image_for_kps)
kps_image = draw_kps_image(kps_image, kps_sequence[i])
kps_images.append(Image.fromarray(kps_image))
return kps_images
@spaces.GPU(duration=600)
def get_video_latents(self, reference_image, kps_images, audio_waveform, video_length, reference_attention_weight, audio_attention_weight):
vae_scale_factor = 8
latent_height = self.image_height // vae_scale_factor
latent_width = self.image_width // vae_scale_factor
latent_shape = (1, 4, video_length, latent_height, latent_width)
vae_latents = randn_tensor(latent_shape, generator=self.generator, device=self.device, dtype=self.dtype)
video_latents = self.pipeline(
vae_latents=vae_latents,
reference_image=reference_image,
kps_images=kps_images,
audio_waveform=audio_waveform,
width=self.image_width,
height=self.image_height,
video_length=video_length,
num_inference_steps=self.num_inference_steps,
guidance_scale=self.guidance_scale,
context_frames=self.context_frames,
context_stride=self.context_stride,
context_overlap=self.context_overlap,
reference_attention_weight=reference_attention_weight,
audio_attention_weight=audio_attention_weight,
num_pad_audio_frames=self.num_pad_audio_frames,
generator=self.generator,
).video_latents
return video_latents
@spaces.GPU
def get_video_tensor(self, video_latents):
video_tensor = self.pipeline.decode_latents(video_latents)
if isinstance(video_tensor, np.ndarray):
video_tensor = torch.from_numpy(video_tensor)
return video_tensor
@spaces.GPU
def save_video_tensor(self, video_tensor, audio_path, output_path):
save_video(video_tensor, audio_path, output_path, self.fps)
print(f'The generated video has been saved at {output_path}.')
@spaces.GPU(duration=600)
def infer(
self,
reference_image_path, audio_path, kps_path,
output_path,
retarget_strategy,
reference_attention_weight, audio_attention_weight):
reference_image, reference_image_for_kps, reference_kps = self.get_reference_image_for_kps(reference_image_path)
audio_waveform, video_length = self.get_waveform_video_length(audio_path)
kps_sequence = self.get_kps_sequence(kps_path, reference_kps, video_length, retarget_strategy)
kps_images = self.get_kps_images(kps_sequence, reference_image_for_kps, video_length)
video_latents = self.get_video_latents(
reference_image, kps_images, audio_waveform,
video_length,
reference_attention_weight, audio_attention_weight)
video_tensor = self.get_video_tensor(video_latents)
self.save_video_tensor(video_tensor, audio_path, output_path)
|