|
import torch
|
|
from torch import nn
|
|
from torch.nn import CrossEntropyLoss
|
|
|
|
from transformers import (
|
|
RobertaForSequenceClassification as SeqClassification,
|
|
RobertaPreTrainedModel,
|
|
RobertaModel,
|
|
RobertaConfig
|
|
)
|
|
|
|
from .modeling_outputs import (
|
|
QuestionAnsweringModelOutput,
|
|
QuestionAnsweringNaModelOutput,
|
|
)
|
|
|
|
class RobertaForSequenceClassification(SeqClassification):
|
|
model_type = "roberta"
|
|
|
|
class RobertaForQuestionAnsweringAVPool(RobertaPreTrainedModel):
|
|
config_class = RobertaConfig
|
|
base_model_prefix = "roberta"
|
|
model_type = "roberta"
|
|
|
|
def __init__(self, config):
|
|
super(RobertaForQuestionAnsweringAVPool, self).__init__(config)
|
|
self.num_labels = config.num_labels
|
|
|
|
self.roberta = RobertaModel(config)
|
|
self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels)
|
|
self.has_ans = nn.Sequential(
|
|
nn.Dropout(p=config.hidden_dropout_prob),
|
|
nn.Linear(config.hidden_size, 2),
|
|
)
|
|
|
|
self.post_init()
|
|
def forward(
|
|
self,
|
|
input_ids=None,
|
|
attention_mask=None,
|
|
token_type_ids=None,
|
|
position_ids=None,
|
|
head_mask=None,
|
|
inputs_embeds=None,
|
|
start_positions=None,
|
|
end_positions=None,
|
|
is_impossibles=None,
|
|
output_attentions=None,
|
|
output_hidden_states=None,
|
|
return_dict=None,
|
|
):
|
|
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
|
|
|
|
|
discriminator_hidden_states = self.roberta(
|
|
input_ids=input_ids,
|
|
attention_mask=attention_mask,
|
|
token_type_ids=token_type_ids,
|
|
position_ids=position_ids,
|
|
head_mask=head_mask,
|
|
inputs_embeds=inputs_embeds,
|
|
output_attentions=output_attentions,
|
|
output_hidden_states=output_hidden_states,
|
|
)
|
|
|
|
|
|
sequence_output = discriminator_hidden_states[0]
|
|
|
|
|
|
logits = self.qa_outputs(sequence_output)
|
|
start_logits = logits[:, :, 0].squeeze(-1).contiguous()
|
|
end_logits = logits[:, :, 1].squeeze(-1).contiguous()
|
|
|
|
first_word = sequence_output[:, 0, :]
|
|
|
|
has_logits = self.has_ans(first_word)
|
|
|
|
total_loss = None
|
|
if (
|
|
start_positions is not None
|
|
and end_positions is not None
|
|
and is_impossibles is not None
|
|
):
|
|
|
|
if len(start_positions.size()) > 1:
|
|
start_positions = start_positions.squeeze(-1)
|
|
if len(end_positions.size()) > 1:
|
|
end_positions = end_positions.squeeze(-1)
|
|
if len(is_impossibles.size()) > 1:
|
|
is_impossibles = is_impossibles.squeeze(-1)
|
|
|
|
|
|
ignored_index = start_logits.size(1)
|
|
start_positions.clamp_(0, ignored_index)
|
|
end_positions.clamp_(0, ignored_index)
|
|
is_impossibles.clamp_(0, ignored_index)
|
|
|
|
loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
|
|
start_loss = loss_fct(start_logits, start_positions)
|
|
end_loss = loss_fct(end_logits, end_positions)
|
|
span_loss = start_loss + end_loss
|
|
|
|
|
|
alpha1 = 1.0
|
|
alpha2 = 0.5
|
|
choice_loss = loss_fct(has_logits, is_impossibles.long())
|
|
total_loss = alpha1 * span_loss + alpha2 * choice_loss
|
|
|
|
if not return_dict:
|
|
output = (
|
|
start_logits,
|
|
end_logits,
|
|
has_logits,
|
|
) + discriminator_hidden_states[2:]
|
|
return ((total_loss,) + output) if total_loss is not None else output
|
|
|
|
return QuestionAnsweringNaModelOutput(
|
|
loss=total_loss,
|
|
start_logits=start_logits,
|
|
end_logits=end_logits,
|
|
has_logits=has_logits,
|
|
hidden_states=discriminator_hidden_states.hidden_states,
|
|
attentions=discriminator_hidden_states.attentions,
|
|
) |