File size: 7,757 Bytes
550665c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
import torch
from torch import nn
from torch.nn import CrossEntropyLoss

from transformers import (
    ElectraForSequenceClassification as SeqClassification,
    ElectraPreTrainedModel,
    ElectraModel,
    ElectraConfig
)

from .modeling_outputs import (
    QuestionAnsweringModelOutput,
    QuestionAnsweringNaModelOutput,
)

class ElectraForSequenceClassification(SeqClassification):
    model_type = "electra"
    
class ElectraForQuestionAnsweringAVPool(ElectraPreTrainedModel):
    config_class = ElectraConfig
    base_model_prefix = "electra"
    model_type = "electra"
    
    def __init__(self, config):
        super(ElectraForQuestionAnsweringAVPool, self).__init__(config)
        self.num_labels = config.num_labels
        
        self.electra = ElectraModel(config)
        self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels)
        self.has_ans = nn.Sequential(
            nn.Dropout(p=config.hidden_dropout_prob),
            nn.Linear(config.hidden_size, 2),
        )
        
        self.post_init()
    def forward(

        self,

        input_ids=None,

        attention_mask=None,

        token_type_ids=None,

        position_ids=None,

        head_mask=None,

        inputs_embeds=None,

        start_positions=None,

        end_positions=None,

        is_impossibles=None,

        output_attentions=None,

        output_hidden_states=None,

        return_dict=None,

        ):
        """

        Forward pass of the model for question answering.



        Args:

            input_ids (torch.Tensor, optional): Indices of input sequence tokens in the vocabulary.

                Shape: `(batch_size, sequence_length)`.

            attention_mask (torch.Tensor, optional): Mask to avoid performing attention on padding token indices.

                Shape: `(batch_size, sequence_length)`.

            token_type_ids (torch.Tensor, optional): Segment indices to distinguish different sequences in the input.

                Shape: `(batch_size, sequence_length)`.

            position_ids (torch.Tensor, optional): Indices of positions of each input sequence token in the position embeddings.

                Shape: `(batch_size, sequence_length)`.

            head_mask (torch.Tensor, optional): Mask to nullify selected heads of self-attention modules.

                Shape: `(num_layers, num_heads)`.

            inputs_embeds (torch.Tensor, optional): Pretrained embeddings for the input sequence.

                Shape: `(batch_size, sequence_length, hidden_size)`.

            start_positions (torch.Tensor, optional): Indices of the start position of the answer span in the input sequence.

                Shape: `(batch_size,)`.

            end_positions (torch.Tensor, optional): Indices of the end position of the answer span in the input sequence.

                Shape: `(batch_size,)`.

            is_impossibles (torch.Tensor, optional): Boolean tensor indicating whether the answer span is impossible.

                Shape: `(batch_size,)`.

            output_attentions (bool, optional): Whether to return the attentions weights of all layers.

            output_hidden_states (bool, optional): Whether to return the hidden states of all layers.

            return_dict (bool, optional): Whether to return a `QuestionAnsweringNaModelOutput` object instead of a tuple.



        Returns:

            torch.Tensor or QuestionAnsweringNaModelOutput: If `return_dict` is `False`, returns a tuple of tensors:

                - `start_logits`: Logits for start position classification.

                - `end_logits`: Logits for end position classification.

                - `has_logits`: Logits for choice classification.

                - `hidden_states`: Hidden states of all layers.

                - `attentions`: Attentions weights of all layers.

            If `return_dict` is `True`, returns a `QuestionAnsweringNaModelOutput` object with the following attributes:

                - `loss`: Total loss for training.

                - `start_logits`: Logits for start position classification.

                - `end_logits`: Logits for end position classification.

                - `has_logits`: Logits for choice classification.

                - `hidden_states`: Hidden states of all layers.

                - `attentions`: Attentions weights of all layers.

        """
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict
        
        # outputs shape: (loss(optional, returned when labels is provided, else None), logits, hidden states, attentions)
        discriminator_hidden_states = self.electra(
            input_ids=input_ids,
            attention_mask=attention_mask,
            token_type_ids=token_type_ids,
            position_ids=position_ids,
            head_mask=head_mask,
            inputs_embeds=inputs_embeds,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
        )
        
        # sequence_output shape: (batch_size, sequence_length, hidden_size)
        sequence_output = discriminator_hidden_states[0]
        
        # For each input, the model outputs a vector of two numbers: the start and end logits.
        logits = self.qa_outputs(sequence_output)
        start_logits, end_logits = logits.split(1, dim=-1)
        start_logits = start_logits.squeeze(-1).contiguous()
        end_logits = end_logits.squeeze(-1).contiguous()
        
        first_word = sequence_output[:, 0, :]
        
        has_logits = self.has_ans(first_word)
        
        total_loss = None
        if (
            start_positions is not None
            and end_positions is not None
            and is_impossibles is not None
        ):
            # If we are on multi-GPU, split add a dimension
            if len(start_positions.size()) > 1:
                start_positions = start_positions.squeeze(-1)
            if len(end_positions.size()) > 1:
                end_positions = end_positions.squeeze(-1)
            if len(is_impossibles.size()) > 1:
                is_impossibles = is_impossibles.squeeze(-1)
            
            # sometimes the start/end positions are outside our model inputs, we ignore these terms
            ignored_index = start_logits.size(1)
            start_positions.clamp_(0, ignored_index)
            end_positions.clamp_(0, ignored_index)
            is_impossibles.clamp_(0, ignored_index)
            
            loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
            start_loss = loss_fct(start_logits, start_positions)
            end_loss = loss_fct(end_logits, end_positions)
            span_loss = start_loss + end_loss
            
            # Internal Front Verification (I-FV)
            alpha1 = 1.0
            alpha2 = 0.5
            choice_loss = loss_fct(has_logits, is_impossibles.long())
            total_loss = alpha1 * span_loss + alpha2 * choice_loss
        
        if not return_dict:
            output = (
                start_logits,
                end_logits,
                has_logits,
            ) + discriminator_hidden_states[2:] # add hidden states and attention if they are here
            return ((total_loss,) + output) if total_loss is not None else output
        
        return QuestionAnsweringNaModelOutput(
            loss=total_loss,
            start_logits=start_logits,
            end_logits=end_logits,
            has_logits=has_logits,
            hidden_states=discriminator_hidden_states.hidden_states,
            attentions=discriminator_hidden_states.attentions,
        )