File size: 4,895 Bytes
550665c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
import torch
from torch import nn
from torch.nn import CrossEntropyLoss

from transformers import (
    DistilBertForSequenceClassification as SeqClassification,
    DistilBertPreTrainedModel,
    DistilBertModel,
    DistilBertConfig,
    
)

from .modeling_outputs import (
    QuestionAnsweringModelOutput,
    QuestionAnsweringNaModelOutput,
)

class DistilBertForSequenceClassification(SeqClassification):
    model_type = "distilbert"
    
class DistilBertForQuestionAnsweringAVPool(DistilBertPreTrainedModel):
    config_class = DistilBertConfig
    base_model_prefix = "distilbert"
    model_type = "distilbert"
    
    def __init__(self, config):
        # super(DistilBertForQuestionAnsweringAVPool, self).__init__(config)
        super().__init__(config)
        self.num_labels = config.num_labels
        
        self.distilbert = DistilBertModel(config)
        self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels)
        self.has_ans = nn.Sequential(
            # nn.Dropout(p=config.hidden_dropout_prob),
            nn.Dropout(p=0.2),
            nn.Linear(config.hidden_size, 2),
        )
        
        self.post_init()
    def forward(

        self,

        input_ids=None,

        attention_mask=None,

        token_type_ids=None,

        position_ids=None,

        head_mask=None,

        inputs_embeds=None,

        start_positions=None,

        end_positions=None,

        is_impossibles=None,

        output_attentions=None,

        output_hidden_states=None,

        return_dict=None,

        ):
        
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict
        
        # outputs shape: (loss(optional, returned when labels is provided, else None), logits, hidden states, attentions)
        discriminator_hidden_states = self.distilbert(
            input_ids=input_ids,
            attention_mask=attention_mask,
            # token_type_ids=token_type_ids,
            # position_ids=position_ids,
            head_mask=head_mask,
            inputs_embeds=inputs_embeds,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
        )
        
        # sequence_output shape: (batch_size, sequence_length, hidden_size)
        sequence_output = discriminator_hidden_states[0]
        
        # For each input, the model outputs a vector of two numbers: the start and end logits.
        logits = self.qa_outputs(sequence_output)
        start_logits = logits[:, :, 0].squeeze(-1).contiguous()
        end_logits = logits[:, :, 1].squeeze(-1).contiguous()
        
        first_word = sequence_output[:, 0, :]
        
        has_logits = self.has_ans(first_word)
        
        total_loss = None
        if (
            start_positions is not None
            and end_positions is not None
            and is_impossibles is not None
        ):
            # If we are on multi-GPU, split add a dimension
            if len(start_positions.size()) > 1:
                start_positions = start_positions.squeeze(-1)
            if len(end_positions.size()) > 1:
                end_positions = end_positions.squeeze(-1)
            if len(is_impossibles.size()) > 1:
                is_impossibles = is_impossibles.squeeze(-1)
            
            # sometimes the start/end positions are outside our model inputs, we ignore these terms
            ignored_index = start_logits.size(1)
            start_positions.clamp_(0, ignored_index).long()
            end_positions.clamp_(0, ignored_index).long()
            is_impossibles.clamp_(0, ignored_index).long()

            loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
            start_loss = loss_fct(start_logits, start_positions)
            end_loss = loss_fct(end_logits, end_positions)
            span_loss = start_loss + end_loss
            
            # Internal Front Verification (I-FV)
            alpha1 = 1.0
            alpha2 = 0.5
            choice_loss = loss_fct(has_logits, is_impossibles.long())
            total_loss = alpha1 * span_loss + alpha2 * choice_loss
        
        if not return_dict:
            output = (
                start_logits,
                end_logits,
                has_logits,
            ) + discriminator_hidden_states[2:] # add hidden states and attention if they are here
            return ((total_loss,) + output) if total_loss is not None else output
        
        return QuestionAnsweringNaModelOutput(
            loss=total_loss,
            start_logits=start_logits,
            end_logits=end_logits,
            has_logits=has_logits,
            hidden_states=discriminator_hidden_states.hidden_states,
            attentions=discriminator_hidden_states.attentions,
        )